/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "elf_file.h" #include #include // For the PROT_* and MAP_* constants. #include #include #include #include #include "android-base/stringprintf.h" #include "arch/instruction_set.h" #include "base/casts.h" #include "base/os.h" #include "base/unix_file/fd_file.h" #include "elf/elf_utils.h" #include "elf_file_impl.h" namespace art HIDDEN { using android::base::StringPrintf; template ElfFileImpl* ElfFileImpl::Open(File* file, off_t start, size_t file_length, const std::string& file_location, bool low_4gb, std::string* error_msg) { std::unique_ptr> elf_file( new ElfFileImpl(file, start, file_length, file_location)); if (!elf_file->Setup(low_4gb, error_msg)) { return nullptr; } return elf_file.release(); } template bool ElfFileImpl::Setup(bool low_4gb, std::string* error_msg) { if (file_length_ < sizeof(Elf_Ehdr)) { *error_msg = StringPrintf( "File size of %zd bytes not large enough to contain ELF header of " "%zd bytes: '%s'", file_length_, sizeof(Elf_Ehdr), file_location_.c_str()); return false; } int prot = PROT_READ; int flags = MAP_PRIVATE; // first just map ELF header to get program header size information size_t elf_header_size = sizeof(Elf_Ehdr); if (!SetMap(MemMap::MapFile(elf_header_size, prot, flags, file_->Fd(), start_, low_4gb, file_location_.c_str(), error_msg), error_msg)) { return false; } // then remap to cover program header size_t program_header_size = header_->e_phoff + (header_->e_phentsize * header_->e_phnum); if (file_length_ < program_header_size) { *error_msg = StringPrintf( "File size of %zd bytes not large enough to contain ELF program header of %zd bytes: '%s'", file_length_, sizeof(Elf_Ehdr), file_location_.c_str()); return false; } if (!SetMap(MemMap::MapFile(program_header_size, prot, flags, file_->Fd(), start_, low_4gb, file_location_.c_str(), error_msg), error_msg)) { *error_msg = StringPrintf("Failed to map ELF program headers: %s", error_msg->c_str()); return false; } program_headers_start_ = Begin() + GetHeader().e_phoff; return true; } template bool ElfFileImpl::CheckSectionsExist(std::string* error_msg) const { // This is redundant, but defensive. if (dynamic_program_header_ == nullptr) { *error_msg = StringPrintf("Failed to find PT_DYNAMIC program header in ELF file: '%s'", file_location_.c_str()); return false; } // Need a dynamic section. This is redundant, but defensive. if (dynamic_section_start_ == nullptr) { *error_msg = StringPrintf("Failed to find dynamic section in ELF file: '%s'", file_location_.c_str()); return false; } // Symtab validation. These is not really a hard failure, as we are currently not using the // symtab internally, but it's nice to be defensive. if (symtab_section_start_ != nullptr) { // When there's a symtab, there should be a strtab. if (strtab_section_start_ == nullptr) { *error_msg = StringPrintf("No strtab for symtab in ELF file: '%s'", file_location_.c_str()); return false; } } // We always need a dynstr & dynsym. if (dynstr_section_start_ == nullptr) { *error_msg = StringPrintf("No dynstr in ELF file: '%s'", file_location_.c_str()); return false; } if (dynsym_section_start_ == nullptr) { *error_msg = StringPrintf("No dynsym in ELF file: '%s'", file_location_.c_str()); return false; } // Need a hash section for dynamic symbol lookup. if (hash_section_start_ == nullptr) { *error_msg = StringPrintf("Failed to find hash section in ELF file: '%s'", file_location_.c_str()); return false; } // We'd also like to confirm a shstrtab. This is usually the last in an oat file, and a good // indicator of whether writing was successful (or the process crashed and left garbage). // It might not be mapped, but we can compare against the file size. size_t offset = GetHeader().e_shoff + (GetHeader().e_shstrndx * GetHeader().e_shentsize); if (offset >= file_length_) { *error_msg = StringPrintf("Shstrtab is not in the mapped ELF file: '%s'", file_location_.c_str()); return false; } return true; } template bool ElfFileImpl::SetMap(MemMap&& map, std::string* error_msg) { if (!map.IsValid()) { // MemMap::Open should have already set an error. DCHECK(!error_msg->empty()); return false; } map_ = std::move(map); CHECK(map_.IsValid()) << file_location_; CHECK(map_.Begin() != nullptr) << file_location_; header_ = reinterpret_cast(map_.Begin()); if ((ELFMAG0 != header_->e_ident[EI_MAG0]) || (ELFMAG1 != header_->e_ident[EI_MAG1]) || (ELFMAG2 != header_->e_ident[EI_MAG2]) || (ELFMAG3 != header_->e_ident[EI_MAG3])) { *error_msg = StringPrintf("Failed to find ELF magic value %d %d %d %d in %s, found %d %d %d %d", ELFMAG0, ELFMAG1, ELFMAG2, ELFMAG3, file_location_.c_str(), header_->e_ident[EI_MAG0], header_->e_ident[EI_MAG1], header_->e_ident[EI_MAG2], header_->e_ident[EI_MAG3]); return false; } uint8_t elf_class = (sizeof(Elf_Addr) == sizeof(Elf64_Addr)) ? ELFCLASS64 : ELFCLASS32; if (elf_class != header_->e_ident[EI_CLASS]) { *error_msg = StringPrintf("Failed to find expected EI_CLASS value %d in %s, found %d", elf_class, file_location_.c_str(), header_->e_ident[EI_CLASS]); return false; } if (ELFDATA2LSB != header_->e_ident[EI_DATA]) { *error_msg = StringPrintf("Failed to find expected EI_DATA value %d in %s, found %d", ELFDATA2LSB, file_location_.c_str(), header_->e_ident[EI_CLASS]); return false; } if (EV_CURRENT != header_->e_ident[EI_VERSION]) { *error_msg = StringPrintf("Failed to find expected EI_VERSION value %d in %s, found %d", EV_CURRENT, file_location_.c_str(), header_->e_ident[EI_CLASS]); return false; } if (ET_DYN != header_->e_type) { *error_msg = StringPrintf("Failed to find expected e_type value %d in %s, found %d", ET_DYN, file_location_.c_str(), header_->e_type); return false; } if (EV_CURRENT != header_->e_version) { *error_msg = StringPrintf("Failed to find expected e_version value %d in %s, found %d", EV_CURRENT, file_location_.c_str(), header_->e_version); return false; } if (0 != header_->e_entry) { *error_msg = StringPrintf("Failed to find expected e_entry value %d in %s, found %d", 0, file_location_.c_str(), static_cast(header_->e_entry)); return false; } if (0 == header_->e_phoff) { *error_msg = StringPrintf("Failed to find non-zero e_phoff value in %s", file_location_.c_str()); return false; } if (0 == header_->e_shoff) { *error_msg = StringPrintf("Failed to find non-zero e_shoff value in %s", file_location_.c_str()); return false; } if (0 == header_->e_ehsize) { *error_msg = StringPrintf("Failed to find non-zero e_ehsize value in %s", file_location_.c_str()); return false; } if (0 == header_->e_phentsize) { *error_msg = StringPrintf("Failed to find non-zero e_phentsize value in %s", file_location_.c_str()); return false; } if (0 == header_->e_phnum) { *error_msg = StringPrintf("Failed to find non-zero e_phnum value in %s", file_location_.c_str()); return false; } if (0 == header_->e_shentsize) { *error_msg = StringPrintf("Failed to find non-zero e_shentsize value in %s", file_location_.c_str()); return false; } if (0 == header_->e_shnum) { *error_msg = StringPrintf("Failed to find non-zero e_shnum value in %s", file_location_.c_str()); return false; } if (0 == header_->e_shstrndx) { *error_msg = StringPrintf("Failed to find non-zero e_shstrndx value in %s", file_location_.c_str()); return false; } if (header_->e_shstrndx >= header_->e_shnum) { *error_msg = StringPrintf("Failed to find e_shnum value %d less than %d in %s", header_->e_shstrndx, header_->e_shnum, file_location_.c_str()); return false; } return true; } template typename ElfTypes::Ehdr& ElfFileImpl::GetHeader() const { CHECK(header_ != nullptr); // Header has been checked in SetMap return *header_; } template uint8_t* ElfFileImpl::GetProgramHeadersStart() const { CHECK(program_headers_start_ != nullptr); // Header has been set in Setup return program_headers_start_; } template typename ElfTypes::Phdr& ElfFileImpl::GetDynamicProgramHeader() const { CHECK(dynamic_program_header_ != nullptr); // Is checked in CheckSectionsExist return *dynamic_program_header_; } template typename ElfTypes::Dyn* ElfFileImpl::GetDynamicSectionStart() const { CHECK(dynamic_section_start_ != nullptr); // Is checked in CheckSectionsExist return dynamic_section_start_; } template typename ElfTypes::Sym* ElfFileImpl::GetSymbolSectionStart( Elf_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_location_ << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return symtab_section_start_; break; } case SHT_DYNSYM: { return dynsym_section_start_; break; } default: { LOG(FATAL) << section_type; return nullptr; } } } template const char* ElfFileImpl::GetStringSectionStart( Elf_Word section_type) const { CHECK(IsSymbolSectionType(section_type)) << file_location_ << " " << section_type; switch (section_type) { case SHT_SYMTAB: { return strtab_section_start_; } case SHT_DYNSYM: { return dynstr_section_start_; } default: { LOG(FATAL) << section_type; return nullptr; } } } template const char* ElfFileImpl::GetString(Elf_Word section_type, Elf_Word i) const { CHECK(IsSymbolSectionType(section_type)) << file_location_ << " " << section_type; if (i == 0) { return nullptr; } const char* string_section_start = GetStringSectionStart(section_type); if (string_section_start == nullptr) { return nullptr; } return string_section_start + i; } // WARNING: The following methods do not check for an error condition (non-existent hash section). // It is the caller's job to do this. template typename ElfTypes::Word* ElfFileImpl::GetHashSectionStart() const { return hash_section_start_; } template typename ElfTypes::Word ElfFileImpl::GetHashBucketNum() const { return GetHashSectionStart()[0]; } template typename ElfTypes::Word ElfFileImpl::GetHashChainNum() const { return GetHashSectionStart()[1]; } template typename ElfTypes::Word ElfFileImpl::GetHashBucket(size_t i, bool* ok) const { if (i >= GetHashBucketNum()) { *ok = false; return 0; } *ok = true; // 0 is nbucket, 1 is nchain return GetHashSectionStart()[2 + i]; } template typename ElfTypes::Word ElfFileImpl::GetHashChain(size_t i, bool* ok) const { if (i >= GetHashChainNum()) { *ok = false; return 0; } *ok = true; // 0 is nbucket, 1 is nchain, & chains are after buckets return GetHashSectionStart()[2 + GetHashBucketNum() + i]; } template typename ElfTypes::Word ElfFileImpl::GetProgramHeaderNum() const { return GetHeader().e_phnum; } template typename ElfTypes::Phdr* ElfFileImpl::GetProgramHeader(Elf_Word i) const { CHECK_LT(i, GetProgramHeaderNum()) << file_location_; // Validity check for caller. uint8_t* program_header = GetProgramHeadersStart() + (i * GetHeader().e_phentsize); CHECK_LT(program_header, End()); return reinterpret_cast(program_header); } template typename ElfTypes::Phdr* ElfFileImpl::FindProgamHeaderByType(Elf_Word type) const { for (Elf_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf_Phdr* program_header = GetProgramHeader(i); if (program_header->p_type == type) { return program_header; } } return nullptr; } template typename ElfTypes::Word ElfFileImpl::GetSectionHeaderNum() const { return GetHeader().e_shnum; } // from bionic static unsigned elfhash(const char *_name) { const unsigned char *name = (const unsigned char *) _name; unsigned h = 0, g; while (*name) { h = (h << 4) + *name++; g = h & 0xf0000000; h ^= g; h ^= g >> 24; } return h; } template const uint8_t* ElfFileImpl::FindDynamicSymbolAddress( const std::string& symbol_name) const { // Check that we have a hash section. if (GetHashSectionStart() == nullptr) { return nullptr; // Failure condition. } const Elf_Sym* sym = FindDynamicSymbol(symbol_name); if (sym != nullptr) { // TODO: we need to change this to calculate base_address_ in ::Open, // otherwise it will be wrongly 0 if ::Load has not yet been called. return base_address_ + sym->st_value; } else { return nullptr; } } // WARNING: Only called from FindDynamicSymbolAddress. Elides check for hash section. template const typename ElfTypes::Sym* ElfFileImpl::FindDynamicSymbol( const std::string& symbol_name) const { if (GetHashBucketNum() == 0) { // No dynamic symbols at all. return nullptr; } Elf_Word hash = elfhash(symbol_name.c_str()); Elf_Word bucket_index = hash % GetHashBucketNum(); bool ok; Elf_Word symbol_and_chain_index = GetHashBucket(bucket_index, &ok); if (!ok) { return nullptr; } while (symbol_and_chain_index != 0 /* STN_UNDEF */) { Elf_Sym* symbol = GetSymbol(SHT_DYNSYM, symbol_and_chain_index); if (symbol == nullptr) { return nullptr; // Failure condition. } const char* name = GetString(SHT_DYNSYM, symbol->st_name); if (symbol_name == name) { return symbol; } symbol_and_chain_index = GetHashChain(symbol_and_chain_index, &ok); if (!ok) { return nullptr; } } return nullptr; } template bool ElfFileImpl::IsSymbolSectionType(Elf_Word section_type) { return ((section_type == SHT_SYMTAB) || (section_type == SHT_DYNSYM)); } template typename ElfTypes::Word ElfFileImpl::GetSymbolNum(Elf_Shdr& section_header) const { CHECK(IsSymbolSectionType(section_header.sh_type)) << file_location_ << " " << section_header.sh_type; CHECK_NE(0U, section_header.sh_entsize) << file_location_; return section_header.sh_size / section_header.sh_entsize; } template typename ElfTypes::Sym* ElfFileImpl::GetSymbol(Elf_Word section_type, Elf_Word i) const { Elf_Sym* sym_start = GetSymbolSectionStart(section_type); if (sym_start == nullptr) { return nullptr; } return sym_start + i; } template typename ElfTypes::Word ElfFileImpl::GetDynamicNum() const { return GetDynamicProgramHeader().p_filesz / sizeof(Elf_Dyn); } template typename ElfTypes::Dyn& ElfFileImpl::GetDynamic(Elf_Word i) const { CHECK_LT(i, GetDynamicNum()) << file_location_; return *(GetDynamicSectionStart() + i); } template bool ElfFileImpl::GetLoadedSize(size_t* size, std::string* error_msg) const { uint8_t* vaddr_begin; return GetLoadedAddressRange(&vaddr_begin, size, error_msg); } template size_t ElfFileImpl::GetElfSegmentAlignmentFromFile() const { // Return the alignment of the first loadable program segment. for (Elf_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf_Phdr* program_header = GetProgramHeader(i); if (program_header->p_type != PT_LOAD) { continue; } return program_header->p_align; } LOG(ERROR) << "No loadable segment found in ELF file " << file_location_; return 0; } // Base on bionic phdr_table_get_load_size template bool ElfFileImpl::GetLoadedAddressRange(/*out*/uint8_t** vaddr_begin, /*out*/size_t* vaddr_size, /*out*/std::string* error_msg) const { Elf_Addr min_vaddr = static_cast(-1); Elf_Addr max_vaddr = 0u; for (Elf_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf_Phdr* program_header = GetProgramHeader(i); if (program_header->p_type != PT_LOAD) { continue; } Elf_Addr begin_vaddr = program_header->p_vaddr; if (begin_vaddr < min_vaddr) { min_vaddr = begin_vaddr; } Elf_Addr end_vaddr = program_header->p_vaddr + program_header->p_memsz; if (UNLIKELY(begin_vaddr > end_vaddr)) { std::ostringstream oss; oss << "Program header #" << i << " has overflow in p_vaddr+p_memsz: 0x" << std::hex << program_header->p_vaddr << "+0x" << program_header->p_memsz << "=0x" << end_vaddr << " in ELF file \"" << file_location_ << "\""; *error_msg = oss.str(); *vaddr_begin = nullptr; *vaddr_size = static_cast(-1); return false; } if (end_vaddr > max_vaddr) { max_vaddr = end_vaddr; } } min_vaddr = RoundDown(min_vaddr, kElfSegmentAlignment); max_vaddr = RoundUp(max_vaddr, kElfSegmentAlignment); CHECK_LT(min_vaddr, max_vaddr) << file_location_; // Check that the range fits into the runtime address space. if (UNLIKELY(max_vaddr - 1u > std::numeric_limits::max())) { std::ostringstream oss; oss << "Loaded range is 0x" << std::hex << min_vaddr << "-0x" << max_vaddr << " but maximum size_t is 0x" << std::numeric_limits::max() << " for ELF file \"" << file_location_ << "\""; *error_msg = oss.str(); *vaddr_begin = nullptr; *vaddr_size = static_cast(-1); return false; } *vaddr_begin = reinterpret_cast(min_vaddr); *vaddr_size = dchecked_integral_cast(max_vaddr - min_vaddr); return true; } static InstructionSet GetInstructionSetFromELF(uint16_t e_machine, [[maybe_unused]] uint32_t e_flags) { switch (e_machine) { case EM_ARM: return InstructionSet::kArm; case EM_AARCH64: return InstructionSet::kArm64; case EM_RISCV: return InstructionSet::kRiscv64; case EM_386: return InstructionSet::kX86; case EM_X86_64: return InstructionSet::kX86_64; } return InstructionSet::kNone; } template bool ElfFileImpl::Load(bool executable, bool low_4gb, /*inout*/ MemMap* reservation, /*out*/ std::string* error_msg) { if (executable) { InstructionSet elf_ISA = GetInstructionSetFromELF(GetHeader().e_machine, GetHeader().e_flags); if (elf_ISA != kRuntimeQuickCodeISA) { std::ostringstream oss; oss << "Expected ISA " << kRuntimeQuickCodeISA << " but found " << elf_ISA; *error_msg = oss.str(); return false; } } bool reserved = false; for (Elf_Word i = 0; i < GetProgramHeaderNum(); i++) { Elf_Phdr* program_header = GetProgramHeader(i); // Record .dynamic header information for later use if (program_header->p_type == PT_DYNAMIC) { dynamic_program_header_ = program_header; continue; } // Not something to load, move on. if (program_header->p_type != PT_LOAD) { continue; } // Found something to load. // Before load the actual segments, reserve a contiguous chunk // of required size and address for all segments, but with no // permissions. We'll then carve that up with the proper // permissions as we load the actual segments. If p_vaddr is // non-zero, the segments require the specific address specified, // which either was specified in the file because we already set // base_address_ after the first zero segment). if (!reserved) { uint8_t* vaddr_begin; size_t vaddr_size; if (!GetLoadedAddressRange(&vaddr_begin, &vaddr_size, error_msg)) { DCHECK(!error_msg->empty()); return false; } std::string reservation_name = "ElfFile reservation for " + file_location_; MemMap local_reservation = MemMap::MapAnonymous(reservation_name.c_str(), (reservation != nullptr) ? reservation->Begin() : nullptr, vaddr_size, PROT_NONE, low_4gb, /*reuse=*/false, reservation, error_msg); if (!local_reservation.IsValid()) { *error_msg = StringPrintf("Failed to allocate %s: %s", reservation_name.c_str(), error_msg->c_str()); return false; } reserved = true; // Base address is the difference of actual mapped location and the vaddr_begin. base_address_ = reinterpret_cast( static_cast(local_reservation.Begin() - vaddr_begin)); // By adding the p_vaddr of a section/symbol to base_address_ we will always get the // dynamic memory address of where that object is actually mapped // // TODO: base_address_ needs to be calculated in ::Open, otherwise // FindDynamicSymbolAddress returns the wrong values until Load is called. segments_.push_back(std::move(local_reservation)); } // empty segment, nothing to map if (program_header->p_memsz == 0) { continue; } uint8_t* p_vaddr = base_address_ + program_header->p_vaddr; int prot = 0; if (executable && ((program_header->p_flags & PF_X) != 0)) { prot |= PROT_EXEC; } if ((program_header->p_flags & PF_W) != 0) { prot |= PROT_WRITE; } if ((program_header->p_flags & PF_R) != 0) { prot |= PROT_READ; } if (program_header->p_filesz > program_header->p_memsz) { *error_msg = StringPrintf("Invalid p_filesz > p_memsz (%" PRIu64 " > %" PRIu64 "): %s", static_cast(program_header->p_filesz), static_cast(program_header->p_memsz), file_location_.c_str()); return false; } if (program_header->p_filesz < program_header->p_memsz && !IsAligned(program_header->p_filesz)) { *error_msg = StringPrintf("Unsupported unaligned p_filesz < p_memsz (%" PRIu64 " < %" PRIu64 "): %s", static_cast(program_header->p_filesz), static_cast(program_header->p_memsz), file_location_.c_str()); return false; } if (file_length_ < (program_header->p_offset + program_header->p_filesz)) { *error_msg = StringPrintf( "File size of %zd bytes not large enough to contain ELF segment " "%d of %" PRIu64 " bytes: '%s'", file_length_, i, static_cast(program_header->p_offset + program_header->p_filesz), file_location_.c_str()); return false; } if (program_header->p_filesz != 0u) { MemMap segment = MemMap::MapFileAtAddress(p_vaddr, program_header->p_filesz, prot, MAP_PRIVATE, file_->Fd(), start_ + program_header->p_offset, /*low_4gb=*/false, file_location_.c_str(), /*reuse=*/true, // implies MAP_FIXED /*reservation=*/nullptr, error_msg); if (!segment.IsValid()) { *error_msg = StringPrintf("Failed to map ELF file segment %d from %s: %s", i, file_location_.c_str(), error_msg->c_str()); return false; } if (segment.Begin() != p_vaddr) { *error_msg = StringPrintf( "Failed to map ELF file segment %d from %s at expected address %p, " "instead mapped to %p", i, file_location_.c_str(), p_vaddr, segment.Begin()); return false; } segments_.push_back(std::move(segment)); } if (program_header->p_filesz < program_header->p_memsz) { std::string name = StringPrintf("Zero-initialized segment %" PRIu64 " of ELF file %s", static_cast(i), file_location_.c_str()); MemMap segment = MemMap::MapAnonymous(name.c_str(), p_vaddr + program_header->p_filesz, program_header->p_memsz - program_header->p_filesz, prot, /*low_4gb=*/false, /*reuse=*/true, /*reservation=*/nullptr, error_msg); if (!segment.IsValid()) { *error_msg = StringPrintf("Failed to map zero-initialized ELF file segment %d from %s: %s", i, file_location_.c_str(), error_msg->c_str()); return false; } if (segment.Begin() != p_vaddr) { *error_msg = StringPrintf( "Failed to map zero-initialized ELF file segment %d from %s " "at expected address %p, instead mapped to %p", i, file_location_.c_str(), p_vaddr, segment.Begin()); return false; } segments_.push_back(std::move(segment)); } } // Now that we are done loading, .dynamic should be in memory to find .dynstr, .dynsym, .hash uint8_t* dsptr = base_address_ + GetDynamicProgramHeader().p_vaddr; if ((dsptr < Begin() || dsptr >= End()) && !ValidPointer(dsptr)) { *error_msg = StringPrintf("dynamic section address invalid in ELF file %s", file_location_.c_str()); return false; } dynamic_section_start_ = reinterpret_cast(dsptr); for (Elf_Word i = 0; i < GetDynamicNum(); i++) { Elf_Dyn& elf_dyn = GetDynamic(i); uint8_t* d_ptr = base_address_ + elf_dyn.d_un.d_ptr; switch (elf_dyn.d_tag) { case DT_HASH: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_location_.c_str()); return false; } hash_section_start_ = reinterpret_cast(d_ptr); break; } case DT_STRTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_location_.c_str()); return false; } dynstr_section_start_ = reinterpret_cast(d_ptr); break; } case DT_SYMTAB: { if (!ValidPointer(d_ptr)) { *error_msg = StringPrintf("DT_HASH value %p does not refer to a loaded ELF segment of %s", d_ptr, file_location_.c_str()); return false; } dynsym_section_start_ = reinterpret_cast(d_ptr); break; } case DT_NULL: { if (GetDynamicNum() != i+1) { *error_msg = StringPrintf( "DT_NULL found after %d .dynamic entries, " "expected %d as implied by size of PT_DYNAMIC segment in %s", i + 1, GetDynamicNum(), file_location_.c_str()); return false; } break; } } } // Check for the existence of some sections. if (!CheckSectionsExist(error_msg)) { return false; } return true; } template bool ElfFileImpl::ValidPointer(const uint8_t* start) const { for (const MemMap& segment : segments_) { if (segment.Begin() <= start && start < segment.End()) { return true; } } return false; } // Explicit instantiations template class ElfFileImpl; template class ElfFileImpl; ElfFile* ElfFile::Open(File* file, off_t start, size_t file_length, const std::string& file_location, bool low_4gb, /*out*/ std::string* error_msg) { if (file_length < EI_NIDENT) { *error_msg = StringPrintf("File %s is too short to be a valid ELF file", file_location.c_str()); return nullptr; } MemMap map = MemMap::MapFile(EI_NIDENT, PROT_READ, MAP_PRIVATE, file->Fd(), start, low_4gb, file_location.c_str(), error_msg); if (!map.IsValid() || map.Size() != EI_NIDENT) { return nullptr; } uint8_t* header = map.Begin(); if (header[EI_CLASS] == ELFCLASS64) { return ElfFileImpl64::Open(file, start, file_length, file_location, low_4gb, error_msg); } else if (header[EI_CLASS] == ELFCLASS32) { return ElfFileImpl32::Open(file, start, file_length, file_location, low_4gb, error_msg); } else { *error_msg = StringPrintf("Failed to find expected EI_CLASS value %d or %d in %s, found %d", ELFCLASS32, ELFCLASS64, file_location.c_str(), header[EI_CLASS]); return nullptr; } } ElfFile* ElfFile::Open(File* file, bool low_4gb, /*out*/ std::string* error_msg) { int64_t file_length = file->GetLength(); if (file_length < 0) { *error_msg = ART_FORMAT("Failed to get file length of '{}': {}", file->GetPath(), strerror(errno)); return nullptr; } return Open(file, /*start=*/0, file_length, file->GetPath(), low_4gb, error_msg); } } // namespace art