// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/entropy_pool.h" #include #include #include #include #include // NOLINT #include #include #include "gtest/gtest.h" #include "absl/container/flat_hash_set.h" #include "absl/synchronization/mutex.h" namespace { using ::absl::random_internal::GetEntropyFromRandenPool; TEST(EntropyPoolTest, DistinctSequencesPerThread) { using result_type = uint32_t; constexpr int kNumThreads = 12; constexpr size_t kValuesPerThread = 32; // Acquire entropy from multiple threads. std::vector> data; { absl::Mutex mu; std::vector threads; for (int i = 0; i < kNumThreads; i++) { threads.emplace_back([&]() { std::vector v(kValuesPerThread); GetEntropyFromRandenPool(v.data(), sizeof(result_type) * v.size()); absl::MutexLock l(&mu); data.push_back(std::move(v)); }); } for (auto& t : threads) t.join(); } EXPECT_EQ(data.size(), kNumThreads); // There should be essentially no duplicates in the sequences. size_t expected_size = 0; absl::flat_hash_set seen; for (const auto& v : data) { expected_size += v.size(); for (result_type x : v) seen.insert(x); } EXPECT_GE(seen.size(), expected_size - 1); } // This validates that sequences are independent. TEST(EntropyPoolTest, ValidateDistribution) { using result_type = uint32_t; constexpr int kNumOutputs = 16; std::vector a(kNumOutputs); std::vector b(kNumOutputs); GetEntropyFromRandenPool(a.data(), sizeof(a[0]) * a.size()); GetEntropyFromRandenPool(b.data(), sizeof(b[0]) * b.size()); // Compare the two sequences, counting the number of bits that are different, // then verify using a normal-approximation of the binomial distribution. size_t changed_bits = 0; size_t total_set = 0; size_t equal_count = 0; size_t zero_count = 0; for (size_t i = 0; i < a.size(); ++i) { std::bitset changed_set(a[i] ^ b[i]); changed_bits += changed_set.count(); std::bitset a_set(a[i]); std::bitset b_set(b[i]); total_set += a_set.count() + b_set.count(); equal_count += (a[i] == b[i]) ? 1 : 0; zero_count += (a[i] == 0) ? 1 : 0; zero_count += (b[i] == 0) ? 1 : 0; } constexpr size_t kNBits = kNumOutputs * sizeof(result_type) * 8; // This should be a binomial distribution with: // p = 0.5 // n = kNBits // sigma =~ 11.3 (sqrt(n * 0.5 * 0.5)) // So we expect the number of changed bits to be within 5 standard deviations // of the mean; this should fail less than one in 3 million times. EXPECT_NEAR(changed_bits, kNBits * 0.5, 5 * std::sqrt(kNBits)) << "@" << changed_bits / static_cast(kNBits); // Verify that the number of set bits is also within the expected range; // Note that this is summed over the two sequences, so the number of trials // is twice the number of bits. EXPECT_NEAR(total_set, kNBits, 5 * std::sqrt(2 * kNBits)) << "@" << total_set / static_cast(2 * kNBits); // A[i] == B[i] with probability ~= 16 * 1/2^32; certainly less than 1. EXPECT_LE(equal_count, 1); // Zeros values must be rare; 32 / 2^32 is certainly less than 1. EXPECT_LE(zero_count, 1); } } // namespace