/* * Double-precision SVE cbrt(x) function. * * Copyright (c) 2023-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "test_sig.h" #include "test_defs.h" #include "sv_poly_f64.h" const static struct data { float64_t poly[4]; float64_t table[5]; float64_t one_third, two_thirds, shift; int64_t exp_bias; uint64_t tiny_bound, thresh; } data = { /* Generated with FPMinimax in [0.5, 1]. */ .poly = { 0x1.c14e8ee44767p-2, 0x1.dd2d3f99e4c0ep-1, -0x1.08e83026b7e74p-1, 0x1.2c74eaa3ba428p-3, }, /* table[i] = 2^((i - 2) / 3). */ .table = { 0x1.428a2f98d728bp-1, 0x1.965fea53d6e3dp-1, 0x1p0, 0x1.428a2f98d728bp0, 0x1.965fea53d6e3dp0, }, .one_third = 0x1.5555555555555p-2, .two_thirds = 0x1.5555555555555p-1, .shift = 0x1.8p52, .exp_bias = 1022, .tiny_bound = 0x0010000000000000, /* Smallest normal. */ .thresh = 0x7fe0000000000000, /* asuint64 (infinity) - tiny_bound. */ }; #define MantissaMask 0x000fffffffffffff #define HalfExp 0x3fe0000000000000 static svfloat64_t NOINLINE special_case (svfloat64_t x, svfloat64_t y, svbool_t special) { return sv_call_f64 (cbrt, x, y, special); } static inline svfloat64_t shifted_lookup (const svbool_t pg, const float64_t *table, svint64_t i) { return svld1_gather_index (pg, table, svadd_x (pg, i, 2)); } /* Approximation for double-precision vector cbrt(x), using low-order polynomial and two Newton iterations. The vector version of frexp does not handle subnormals correctly. As a result these need to be handled by the scalar fallback, where accuracy may be worse than that of the vector code path. Greatest observed error in the normal range is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. _ZGVsMxv_cbrt (0x0.3fffb8d4413f3p-1022) got 0x1.965f53b0e5d97p-342 want 0x1.965f53b0e5d95p-342. */ svfloat64_t SV_NAME_D1 (cbrt) (svfloat64_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); svfloat64_t ax = svabs_x (pg, x); svuint64_t iax = svreinterpret_u64 (ax); svuint64_t sign = sveor_x (pg, svreinterpret_u64 (x), iax); /* Subnormal, +/-0 and special values. */ svbool_t special = svcmpge (pg, svsub_x (pg, iax, d->tiny_bound), d->thresh); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexp, which gets subnormal values wrong - these have to be special-cased as a result. */ svfloat64_t m = svreinterpret_f64 (svorr_x ( pg, svand_x (pg, svreinterpret_u64 (x), MantissaMask), HalfExp)); svint64_t e = svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, iax, 52)), d->exp_bias); /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ svfloat64_t p = sv_pairwise_poly_3_f64_x (pg, m, svmul_x (pg, m, m), d->poly); /* Two iterations of Newton's method for iteratively approximating cbrt. */ svfloat64_t m_by_3 = svmul_x (pg, m, d->one_third); svfloat64_t a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, p, p)), p, d->two_thirds); a = svmla_x (pg, svdiv_x (pg, m_by_3, svmul_x (pg, a, a)), a, d->two_thirds); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ svfloat64_t eb3f = svmul_x (pg, svcvt_f64_x (pg, e), d->one_third); svint64_t ey = svcvt_s64_x (pg, eb3f); svint64_t em3 = svmls_x (pg, e, ey, 3); svfloat64_t my = shifted_lookup (pg, d->table, em3); my = svmul_x (pg, my, a); /* Vector version of ldexp. */ svfloat64_t y = svscale_x (pg, my, ey); if (unlikely (svptest_any (pg, special))) return special_case ( x, svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)), special); /* Copy sign. */ return svreinterpret_f64 (svorr_x (pg, svreinterpret_u64 (y), sign)); } /* Worse-case ULP error assumes that scalar fallback is GLIBC 2.40 cbrt, which has ULP error of 3.67 at 0x1.7a337e1ba1ec2p-257 [1]. Largest observed error in the vector path is 1.79 ULP. [1] Innocente, V., & Zimmermann, P. (2024). Accuracy of Mathematical Functions in Single, Double, Double Extended, and Quadruple Precision. */ TEST_SIG (SV, D, 1, cbrt, -10.0, 10.0) TEST_ULP (SV_NAME_D1 (cbrt), 3.17) TEST_DISABLE_FENV (SV_NAME_D1 (cbrt)) TEST_SYM_INTERVAL (SV_NAME_D1 (cbrt), 0, inf, 1000000) CLOSE_SVE_ATTR