/* * Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "../crypto/internal.h" #include "internal.h" BSSL_NAMESPACE_BEGIN bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const { const size_t kWindowSize = map_.size(); if (seq_num > max_seq_num_) { return false; } uint64_t idx = max_seq_num_ - seq_num; return idx >= kWindowSize || map_[idx]; } void DTLSReplayBitmap::Record(uint64_t seq_num) { const size_t kWindowSize = map_.size(); // Shift the window if necessary. if (seq_num > max_seq_num_) { uint64_t shift = seq_num - max_seq_num_; if (shift >= kWindowSize) { map_.reset(); } else { map_ <<= shift; } max_seq_num_ = seq_num; } uint64_t idx = max_seq_num_ - seq_num; if (idx < kWindowSize) { map_[idx] = true; } } static uint16_t dtls_record_version(const SSL *ssl) { if (ssl->s3->version == 0) { // Before the version is determined, outgoing records use dTLS 1.0 for // historical compatibility requirements. return DTLS1_VERSION; } // DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the // version itself. return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION : ssl->s3->version; } static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) { // DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the // combined value. If the version is not known, the epoch is unencrypted and // the value is ignored. return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) ? num.sequence() : num.combined(); } // reconstruct_epoch finds the largest epoch that ends with the epoch bits from // |wire_epoch| that is less than or equal to |current_epoch|, to match the // epoch reconstruction algorithm described in RFC 9147 section 4.2.2. static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) { uint16_t current_epoch_high = current_epoch & 0xfffc; uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high; if (epoch > current_epoch && current_epoch_high > 0) { epoch -= 0x4; } return epoch; } uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, uint64_t max_valid_seqnum) { // Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to // enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2 // bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would // require 5 petabytes. This allows us to continue to pack a DTLS record // number into an 8-byte structure. assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence); assert(seq_mask == 0xff || seq_mask == 0xffff); uint64_t max_seqnum_plus_one = max_valid_seqnum + 1; uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask; uint64_t step = seq_mask + 1; // This addition cannot overflow. It is at most 2^48 + seq_mask. It, however, // may exceed 2^48-1. uint64_t seqnum = max_seqnum_plus_one + diff; bool too_large = seqnum > DTLSRecordNumber::kMaxSequence; // If the diff is larger than half the step size, then the closest seqnum // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of // seqnum. bool closer_is_less = diff > step / 2; // Subtracting step from seqnum will cause underflow if seqnum is too small. bool would_underflow = seqnum < step; if (too_large || (closer_is_less && !would_underflow)) { seqnum -= step; } assert(seqnum <= DTLSRecordNumber::kMaxSequence); return seqnum; } static Span cbs_to_writable_bytes(CBS cbs) { return Span(const_cast(CBS_data(&cbs)), CBS_len(&cbs)); } struct ParsedDTLSRecord { // read_epoch will be null if the record is for an unrecognized epoch. In that // case, |number| may be unset. DTLSReadEpoch *read_epoch = nullptr; DTLSRecordNumber number; CBS header, body; uint8_t type = 0; uint16_t version = 0; }; static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) { // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for // backwards compatibility. return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION && epoch > 0; } static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) { if (out->type & 0x10) { // Connection ID bit set, which we didn't negotiate. return false; } uint16_t max_epoch = ssl->d1->read_epoch.epoch; if (ssl->d1->next_read_epoch != nullptr) { max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch); } uint16_t epoch = reconstruct_epoch(out->type, max_epoch); size_t seq_len = (out->type & 0x08) ? 2 : 1; CBS seq_bytes; if (!CBS_get_bytes(in, &seq_bytes, seq_len)) { return false; } if (out->type & 0x04) { // 16-bit length present if (!CBS_get_u16_length_prefixed(in, &out->body)) { return false; } } else { // No length present - the remaining contents are the whole packet. // CBS_get_bytes is used here to advance |in| to the end so that future // code that computes the number of consumed bytes functions correctly. BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in))); } // Drop the previous read epoch if expired. if (ssl->d1->prev_read_epoch != nullptr && ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec > ssl->d1->prev_read_epoch->expire) { ssl->d1->prev_read_epoch = nullptr; } // Look up the corresponding epoch. This header form only matches encrypted // DTLS 1.3 epochs. DTLSReadEpoch *read_epoch = nullptr; if (epoch == ssl->d1->read_epoch.epoch) { read_epoch = &ssl->d1->read_epoch; } else if (ssl->d1->next_read_epoch != nullptr && epoch == ssl->d1->next_read_epoch->epoch) { read_epoch = ssl->d1->next_read_epoch.get(); } else if (ssl->d1->prev_read_epoch != nullptr && epoch == ssl->d1->prev_read_epoch->epoch.epoch) { read_epoch = &ssl->d1->prev_read_epoch->epoch; } if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) { out->read_epoch = read_epoch; // Decrypt and reconstruct the sequence number: uint8_t mask[2]; if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) { // GenerateMask most likely failed because the record body was not long // enough. return false; } // Apply the mask to the sequence number in-place. The header (with the // decrypted sequence number bytes) is used as the additional data for the // AEAD function. auto writable_seq = cbs_to_writable_bytes(seq_bytes); uint64_t seq = 0; for (size_t i = 0; i < writable_seq.size(); i++) { writable_seq[i] ^= mask[i]; seq = (seq << 8) | writable_seq[i]; } uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1, read_epoch->bitmap.max_seq_num()); out->number = DTLSRecordNumber(epoch, full_seq); } return true; } static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) { uint64_t epoch_and_seq; if (!CBS_get_u16(in, &out->version) || // !CBS_get_u64(in, &epoch_and_seq) || !CBS_get_u16_length_prefixed(in, &out->body)) { return false; } out->number = DTLSRecordNumber::FromCombined(epoch_and_seq); uint16_t epoch = out->number.epoch(); bool version_ok; if (epoch == 0) { // Only check the first byte. Enforcing beyond that can prevent decoding // version negotiation failure alerts. version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR; } else { version_ok = out->version == dtls_record_version(ssl); } if (!version_ok) { return false; } // Look up the corresponding epoch. In DTLS 1.2, we only need to consider one // epoch. if (epoch == ssl->d1->read_epoch.epoch && !use_dtls13_record_header(ssl, epoch)) { out->read_epoch = &ssl->d1->read_epoch; } return true; } static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) { CBS copy = *cbs; if (!CBS_get_u8(cbs, &out->type)) { return false; } bool ok; if ((out->type & 0xe0) == 0x20) { ok = parse_dtls13_record(ssl, cbs, out); } else { ok = parse_dtls12_record(ssl, cbs, out); } if (!ok) { return false; } if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { return false; } size_t header_len = CBS_data(&out->body) - CBS_data(©); BSSL_CHECK(CBS_get_bytes(©, &out->header, header_len)); return true; } enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, DTLSRecordNumber *out_number, Span *out, size_t *out_consumed, uint8_t *out_alert, Span in) { *out_consumed = 0; if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { return ssl_open_record_close_notify; } if (in.empty()) { return ssl_open_record_partial; } CBS cbs(in); ParsedDTLSRecord record; if (!parse_dtls_record(ssl, &cbs, &record)) { // The record header was incomplete or malformed. Drop the entire packet. *out_consumed = in.size(); return ssl_open_record_discard; } ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header); if (record.read_epoch == nullptr || record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) { // Drop this record. It's from an unknown epoch or is a replay. Note that if // the record is from next epoch, it could be buffered for later. For // simplicity, drop it and expect retransmit to handle it later; DTLS must // handle packet loss anyway. *out_consumed = in.size() - CBS_len(&cbs); return ssl_open_record_discard; } // Decrypt the body in-place. if (!record.read_epoch->aead->Open(out, record.type, record.version, dtls_aead_sequence(ssl, record.number), record.header, cbs_to_writable_bytes(record.body))) { // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347. // Clear the error queue of any errors decryption may have added. Drop the // entire packet as it must not have come from the peer. // // TODO(davidben): This doesn't distinguish malloc failures from encryption // failures. ERR_clear_error(); *out_consumed = in.size() - CBS_len(&cbs); return ssl_open_record_discard; } *out_consumed = in.size() - CBS_len(&cbs); // DTLS 1.3 hides the record type inside the encrypted data. bool has_padding = !record.read_epoch->aead->is_null_cipher() && ssl_protocol_version(ssl) >= TLS1_3_VERSION; // Check the plaintext length. size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0); if (out->size() > plaintext_limit) { OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); *out_alert = SSL_AD_RECORD_OVERFLOW; return ssl_open_record_error; } if (has_padding) { do { if (out->empty()) { OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); *out_alert = SSL_AD_DECRYPT_ERROR; return ssl_open_record_error; } record.type = out->back(); *out = out->subspan(0, out->size() - 1); } while (record.type == 0); } record.read_epoch->bitmap.Record(record.number.sequence()); // Once we receive a record from the next epoch in DTLS 1.3, it becomes the // current epoch. Also save the previous epoch. This allows us to handle // packet reordering on KeyUpdate, as well as ACK retransmissions of the // Finished flight. if (record.read_epoch == ssl->d1->next_read_epoch.get()) { assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION); auto prev = MakeUnique(); if (prev == nullptr) { *out_alert = SSL_AD_INTERNAL_ERROR; return ssl_open_record_error; } // Release the epoch after a timeout. prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec; if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) { prev->expire = UINT64_MAX; // Saturate on overflow. } else { prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS; } prev->epoch = std::move(ssl->d1->read_epoch); ssl->d1->prev_read_epoch = std::move(prev); ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch); ssl->d1->next_read_epoch = nullptr; } // TODO(davidben): Limit the number of empty records as in TLS? This is only // useful if we also limit discarded packets. if (record.type == SSL3_RT_ALERT) { return ssl_process_alert(ssl, out_alert, *out); } // Reject application data in epochs that do not allow it. if (record.type == SSL3_RT_APPLICATION_DATA) { bool app_data_allowed; if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { // Application data is allowed in 0-RTT (epoch 1) and after the handshake // (3 and up). app_data_allowed = record.number.epoch() == 1 || record.number.epoch() >= 3; } else { // Application data is allowed starting epoch 1. app_data_allowed = record.number.epoch() >= 1; } if (!app_data_allowed) { OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); *out_alert = SSL_AD_UNEXPECTED_MESSAGE; return ssl_open_record_error; } } ssl->s3->warning_alert_count = 0; *out_type = record.type; *out_number = record.number; return ssl_open_record_success; } static DTLSWriteEpoch *get_write_epoch(const SSL *ssl, uint16_t epoch) { if (ssl->d1->write_epoch.epoch() == epoch) { return &ssl->d1->write_epoch; } for (const auto &e : ssl->d1->extra_write_epochs) { if (e->epoch() == epoch) { return e.get(); } } return nullptr; } size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) { if (!use_dtls13_record_header(ssl, epoch)) { return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH; } // The DTLS 1.3 has a variable length record header. We never send Connection // ID, we always send 16-bit sequence numbers, and we send a length. (Length // can be omitted, but only for the last record of a packet. Since we send // multiple records in one packet, it's easier to implement always sending the // length.) return DTLS1_3_RECORD_HEADER_WRITE_LENGTH; } size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) { DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); if (write_epoch == nullptr) { return 0; } size_t ret = dtls_record_header_write_len(ssl, epoch) + write_epoch->aead->MaxOverhead(); if (use_dtls13_record_header(ssl, epoch)) { // Add 1 byte for the encrypted record type. ret++; } return ret; } size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) { DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); if (write_epoch == nullptr) { return 0; } return dtls_record_header_write_len(ssl, epoch) + write_epoch->aead->ExplicitNonceLen(); } size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) { DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); if (write_epoch == nullptr) { return 0; } size_t header_len = dtls_record_header_write_len(ssl, epoch); if (max_out <= header_len) { return 0; } max_out -= header_len; max_out = write_epoch->aead->MaxSealInputLen(max_out); if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) { // Remove 1 byte for the encrypted record type. max_out--; } return max_out; } bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out, size_t *out_len, size_t max_out, uint8_t type, const uint8_t *in, size_t in_len, uint16_t epoch) { const size_t prefix = dtls_seal_prefix_len(ssl, epoch); if (buffers_alias(in, in_len, out, max_out) && (max_out < prefix || out + prefix != in)) { OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); return false; } // Determine the parameters for the current epoch. DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); if (write_epoch == nullptr) { OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); return false; } const size_t record_header_len = dtls_record_header_write_len(ssl, epoch); // Ensure the sequence number update does not overflow. DTLSRecordNumber record_number = write_epoch->next_record; if (!record_number.HasNext()) { OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); return false; } bool dtls13_header = use_dtls13_record_header(ssl, epoch); uint8_t *extra_in = NULL; size_t extra_in_len = 0; if (dtls13_header) { extra_in = &type; extra_in_len = 1; } size_t ciphertext_len; if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len, extra_in_len)) { OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); return false; } if (max_out < record_header_len + ciphertext_len) { OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); return false; } uint16_t record_version = dtls_record_version(ssl); if (dtls13_header) { // The first byte of the DTLS 1.3 record header has the following format: // 0 1 2 3 4 5 6 7 // +-+-+-+-+-+-+-+-+ // |0|0|1|C|S|L|E E| // +-+-+-+-+-+-+-+-+ // // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length // is present), which is a mask of 0x2c. The E E bits are the low-order two // bits of the epoch. // // +-+-+-+-+-+-+-+-+ // |0|0|1|0|1|1|E E| // +-+-+-+-+-+-+-+-+ out[0] = 0x2c | (epoch & 0x3); // We always use a two-byte sequence number. A one-byte sequence number // would require coordinating with the application on ACK feedback to know // that the peer is not too far behind. CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence()); // TODO(crbug.com/42290594): When we know the record is last in the packet, // omit the length. CRYPTO_store_u16_be(out + 3, ciphertext_len); } else { out[0] = type; CRYPTO_store_u16_be(out + 1, record_version); CRYPTO_store_u64_be(out + 3, record_number.combined()); CRYPTO_store_u16_be(out + 11, ciphertext_len); } Span header(out, record_header_len); if (!write_epoch->aead->SealScatter( out + record_header_len, out + prefix, out + prefix + in_len, type, record_version, dtls_aead_sequence(ssl, record_number), header, in, in_len, extra_in, extra_in_len)) { return false; } // Perform record number encryption (RFC 9147 section 4.2.3). if (dtls13_header) { // Record number encryption uses bytes from the ciphertext as a sample to // generate the mask used for encryption. For simplicity, pass in the whole // ciphertext as the sample - GenerateRecordNumberMask will read only what // it needs (and error if |sample| is too short). Span sample(out + record_header_len, ciphertext_len); uint8_t mask[2]; if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) { return false; } out[1] ^= mask[0]; out[2] ^= mask[1]; } *out_number = record_number; write_epoch->next_record = record_number.Next(); *out_len = record_header_len + ciphertext_len; ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); return true; } BSSL_NAMESPACE_END