// Copyright 2014 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_ #define BASE_NUMERICS_SAFE_CONVERSIONS_H_ #include #include #include #include #include #include "base/numerics/safe_conversions_impl.h" // IWYU pragma: export #if defined(__ARMEL__) && !defined(__native_client__) #include "base/numerics/safe_conversions_arm_impl.h" // IWYU pragma: export #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1) #else #define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0) #endif namespace base { namespace internal { #if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS template struct SaturateFastAsmOp { static constexpr bool is_supported = false; static constexpr Dst Do(Src) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; #endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS #undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS // The following special case a few specific integer conversions where we can // eke out better performance than range checking. template struct IsValueInRangeFastOp { static constexpr bool is_supported = false; static constexpr bool Do(Src value) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; // Signed to signed range comparison. template requires(std::signed_integral && std::signed_integral && !kIsTypeInRangeForNumericType) struct IsValueInRangeFastOp { static constexpr bool is_supported = true; static constexpr bool Do(Src value) { // Just downcast to the smaller type, sign extend it back to the original // type, and then see if it matches the original value. return value == static_cast(value); } }; // Signed to unsigned range comparison. template requires(std::unsigned_integral && std::signed_integral && !kIsTypeInRangeForNumericType) struct IsValueInRangeFastOp { static constexpr bool is_supported = true; static constexpr bool Do(Src value) { // We cast a signed as unsigned to overflow negative values to the top, // then compare against whichever maximum is smaller, as our upper bound. return as_unsigned(value) <= as_unsigned(kCommonMax); } }; // Convenience function that returns true if the supplied value is in range // for the destination type. template requires(UnderlyingType::is_numeric && std::is_arithmetic_v && std::numeric_limits::lowest() < std::numeric_limits::max()) constexpr bool IsValueInRangeForNumericType(Src value) { using SrcType = typename internal::UnderlyingType::type; const auto underlying_value = static_cast(value); return internal::IsValueInRangeFastOp::is_supported ? internal::IsValueInRangeFastOp::Do( underlying_value) : internal::DstRangeRelationToSrcRange(underlying_value) .IsValid(); } // checked_cast<> is analogous to static_cast<> for numeric types, // except that it CHECKs that the specified numeric conversion will not // overflow or underflow. NaN source will always trigger a CHECK. template requires(UnderlyingType::is_numeric && std::is_arithmetic_v && std::numeric_limits::lowest() < std::numeric_limits::max()) constexpr Dst checked_cast(Src value) { // This throws a compile-time error on evaluating the constexpr if it can be // determined at compile-time as failing, otherwise it will CHECK at runtime. using SrcType = typename internal::UnderlyingType::type; if (IsValueInRangeForNumericType(value)) [[likely]] { return static_cast(static_cast(value)); } return CheckHandler::template HandleFailure(); } // Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN. // You may provide your own limits (e.g. to saturated_cast) so long as you // implement all of the static constexpr member functions in the class below. template struct SaturationDefaultLimits : public std::numeric_limits { static constexpr T NaN() { if constexpr (std::numeric_limits::has_quiet_NaN) { return std::numeric_limits::quiet_NaN(); } else { return T(); } } using std::numeric_limits::max; static constexpr T Overflow() { if constexpr (std::numeric_limits::has_infinity) { return std::numeric_limits::infinity(); } else { return std::numeric_limits::max(); } } using std::numeric_limits::lowest; static constexpr T Underflow() { if constexpr (std::numeric_limits::has_infinity) { return std::numeric_limits::infinity() * -1; } else { return std::numeric_limits::lowest(); } } }; template class S, typename Src> constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) { // For some reason clang generates much better code when the branch is // structured exactly this way, rather than a sequence of checks. return !constraint.IsOverflowFlagSet() ? (!constraint.IsUnderflowFlagSet() ? static_cast(value) : S::Underflow()) // Skip this check for integral Src, which cannot be NaN. : (std::is_integral_v || !constraint.IsUnderflowFlagSet() ? S::Overflow() : S::NaN()); } // We can reduce the number of conditions and get slightly better performance // for normal signed and unsigned integer ranges. And in the specific case of // Arm, we can use the optimized saturation instructions. template struct SaturateFastOp { static constexpr bool is_supported = false; static constexpr Dst Do(Src value) { // Force a compile failure if instantiated. return CheckOnFailure::template HandleFailure(); } }; template requires(std::integral && std::integral && SaturateFastAsmOp::is_supported) struct SaturateFastOp { static constexpr bool is_supported = true; static constexpr Dst Do(Src value) { return SaturateFastAsmOp::Do(value); } }; template requires(std::integral && std::integral && !SaturateFastAsmOp::is_supported) struct SaturateFastOp { static constexpr bool is_supported = true; static constexpr Dst Do(Src value) { // The exact order of the following is structured to hit the correct // optimization heuristics across compilers. Do not change without // checking the emitted code. const Dst saturated = CommonMaxOrMin( kIsMaxInRangeForNumericType || (!kIsMinInRangeForNumericType && IsValueNegative(value))); if (IsValueInRangeForNumericType(value)) [[likely]] { return static_cast(value); } return saturated; } }; // saturated_cast<> is analogous to static_cast<> for numeric types, except // that the specified numeric conversion will saturate by default rather than // overflow or underflow, and NaN assignment to an integral will return 0. // All boundary condition behaviors can be overridden with a custom handler. template class SaturationHandler = SaturationDefaultLimits, typename Src> constexpr Dst saturated_cast(Src value) { using SrcType = typename UnderlyingType::type; const auto underlying_value = static_cast(value); return !std::is_constant_evaluated() && SaturateFastOp::is_supported && std::is_same_v, SaturationDefaultLimits> ? SaturateFastOp::Do(underlying_value) : saturated_cast_impl( underlying_value, DstRangeRelationToSrcRange( underlying_value)); } // strict_cast<> is analogous to static_cast<> for numeric types, except that // it will cause a compile failure if the destination type is not large enough // to contain any value in the source type. It performs no runtime checking. template ::type> requires( UnderlyingType::is_numeric && std::is_arithmetic_v && // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // Alternatively, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. kStaticDstRangeRelationToSrcRange == NumericRangeRepresentation::kContained) constexpr Dst strict_cast(Src value) { return static_cast(static_cast(value)); } // Some wrappers to statically check that a type is in range. template inline constexpr bool kIsNumericRangeContained = false; template requires(std::is_arithmetic_v> && std::is_arithmetic_v>) inline constexpr bool kIsNumericRangeContained = kStaticDstRangeRelationToSrcRange == NumericRangeRepresentation::kContained; // StrictNumeric implements compile time range checking between numeric types by // wrapping assignment operations in a strict_cast. This class is intended to be // used for function arguments and return types, to ensure the destination type // can always contain the source type. This is essentially the same as enforcing // -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied // incrementally at API boundaries, making it easier to convert code so that it // compiles cleanly with truncation warnings enabled. // This template should introduce no runtime overhead, but it also provides no // runtime checking of any of the associated mathematical operations. Use // CheckedNumeric for runtime range checks of the actual value being assigned. template requires std::is_arithmetic_v class StrictNumeric { public: using type = T; constexpr StrictNumeric() : value_(0) {} // Copy constructor. template constexpr StrictNumeric(const StrictNumeric& rhs) : value_(strict_cast(rhs.value_)) {} // This is not an explicit constructor because we implicitly upgrade regular // numerics to StrictNumerics to make them easier to use. template // NOLINTNEXTLINE(google-explicit-constructor) constexpr StrictNumeric(Src value) : value_(strict_cast(value)) {} // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // If you're assigning from a CheckedNumeric<> class, you may be able to use // the AssignIfValid() member function, specify a narrower destination type to // the member value functions (e.g. val.template ValueOrDie()), use one // of the value helper functions (e.g. ValueOrDieForType(val)). // If you've encountered an _ambiguous overload_ you can use a static_cast<> // to explicitly cast the result to the destination type. // If none of that works, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. template requires(kIsNumericRangeContained) constexpr operator Dst() const { // NOLINT(google-explicit-constructor) return static_cast>(value_); } private: template requires std::is_arithmetic_v friend class StrictNumeric; T value_; }; template StrictNumeric(T) -> StrictNumeric; // Convenience wrapper returns a StrictNumeric from the provided arithmetic // type. template constexpr StrictNumeric::type> MakeStrictNum( const T value) { return value; } #define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \ template \ requires(internal::kIs##CLASS##Op) \ constexpr bool operator OP(L lhs, R rhs) { \ return SafeCompare::type, \ typename UnderlyingType::type>(lhs, rhs); \ } BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==) BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=) } // namespace internal using internal::as_signed; using internal::as_unsigned; using internal::checked_cast; using internal::IsValueInRangeForNumericType; using internal::IsValueNegative; using internal::kIsTypeInRangeForNumericType; using internal::MakeStrictNum; using internal::SafeUnsignedAbs; using internal::saturated_cast; using internal::strict_cast; using internal::StrictNumeric; // Explicitly make a shorter size_t alias for convenience. using SizeT = StrictNumeric; // floating -> integral conversions that saturate and thus can actually return // an integral type. // // Generally, what you want is saturated_cast(std::nearbyint(x)), which // rounds correctly according to IEEE-754 (round to nearest, ties go to nearest // even number; this avoids bias). If your code is performance-critical // and you are sure that you will never overflow, you can use std::lrint() // or std::llrint(), which return a long or long long directly. // // Below are convenience functions around similar patterns, except that // they round in nonstandard directions and will generally be slower. // Rounds towards negative infinity (i.e., down). template requires(std::integral && std::floating_point) Dst ClampFloor(Src value) { return saturated_cast(std::floor(value)); } // Rounds towards positive infinity (i.e., up). template requires(std::integral && std::floating_point) Dst ClampCeil(Src value) { return saturated_cast(std::ceil(value)); } // Rounds towards nearest integer, with ties away from zero. // This means that 0.5 will be rounded to 1 and 1.5 will be rounded to 2. // Similarly, -0.5 will be rounded to -1 and -1.5 will be rounded to -2. // // This is normally not what you want accuracy-wise (it introduces a small bias // away from zero), and it is not the fastest option, but it is frequently what // existing code expects. Compare with saturated_cast(std::nearbyint(x)) // or std::lrint(x), which would round 0.5 and -0.5 to 0 but 1.5 to 2 and // -1.5 to -2. template requires(std::integral && std::floating_point) Dst ClampRound(Src value) { const Src rounded = std::round(value); return saturated_cast(rounded); } } // namespace base #endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_