// Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_COMPILER_SPECIFIC_H_ #define BASE_COMPILER_SPECIFIC_H_ #include "build/build_config.h" #if defined(COMPILER_MSVC) && !defined(__clang__) #error "Only clang-cl is supported on Windows, see https://crbug.com/988071" #endif // A wrapper around `__has_attribute()`, which is similar to the C++20-standard // `__has_cpp_attribute()`, but tests for support for `__attribute__(())`s. // Compilers that do not support this (e.g. MSVC) are also assumed not to // support `__attribute__`, so this is simply mapped to `0` there. // // See also: // https://clang.llvm.org/docs/LanguageExtensions.html#has-attribute #if defined(__has_attribute) #define HAS_ATTRIBUTE(x) __has_attribute(x) #else #define HAS_ATTRIBUTE(x) 0 #endif // A wrapper around `__has_builtin`, similar to `HAS_ATTRIBUTE()`. // // See also: // https://clang.llvm.org/docs/LanguageExtensions.html#has-builtin #if defined(__has_builtin) #define HAS_BUILTIN(x) __has_builtin(x) #else #define HAS_BUILTIN(x) 0 #endif // A wrapper around `__has_feature`, similar to `HAS_ATTRIBUTE()`. // // See also: // https://clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension #if defined(__has_feature) #define HAS_FEATURE(FEATURE) __has_feature(FEATURE) #else #define HAS_FEATURE(FEATURE) 0 #endif // Annotates a function indicating it should not be inlined. // // You may also want `NOOPT` if your goal is to preserve a function call even // for the most trivial cases; see // https://stackoverflow.com/questions/54481855/clang-ignoring-attribute-noinline/54482070#54482070. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#noinline // // Usage: // ``` // NOINLINE void Func() { // // This body will not be inlined into callers. // } // ``` #if __has_cpp_attribute(gnu::noinline) #define NOINLINE [[gnu::noinline]] #elif __has_cpp_attribute(msvc::noinline) #define NOINLINE [[msvc::noinline]] #else #define NOINLINE #endif // Annotates a function indicating it should not be optimized. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#optnone // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-optimize-function-attribute // // Usage: // ``` // NOOPT void Func() { // // This body will not be optimized. // } // ``` #if __has_cpp_attribute(clang::optnone) #define NOOPT [[clang::optnone]] #elif __has_cpp_attribute(gnu::optimize) #define NOOPT [[gnu::optimize(0)]] #else #define NOOPT #endif // Annotates a function indicating it should always be inlined. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline // // Usage: // ``` // ALWAYS_INLINE void Func() { // // This body will be inlined into callers whenever possible. // } // ``` // // Since `ALWAYS_INLINE` is performance-oriented but can hamper debugging, // ignore it in debug mode. #if defined(NDEBUG) #if __has_cpp_attribute(gnu::always_inline) #define ALWAYS_INLINE [[gnu::always_inline]] inline #elif defined(COMPILER_MSVC) #define ALWAYS_INLINE __forceinline #endif #endif #if !defined(ALWAYS_INLINE) #define ALWAYS_INLINE inline #endif // Annotates a function indicating it should never be tail called. Useful to // make sure callers of the annotated function are never omitted from call // stacks. Often useful with `NOINLINE` to make sure the function itself is also // not omitted from call stacks. Note: this does not prevent code folding of // multiple identical callers into a single signature; to do that, see // `NO_CODE_FOLDING()` in base/debug/alias.h. // // For a caller-side version of this, see `DISABLE_TAIL_CALLS`. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#not-tail-called // // Usage: // ``` // // Calls to this function will not be tail calls. // NOT_TAIL_CALLED void Func(); // ``` #if __has_cpp_attribute(clang::not_tail_called) #define NOT_TAIL_CALLED [[clang::not_tail_called]] #else #define NOT_TAIL_CALLED #endif // Annotates a return statement indicating the compiler must convert it to a // tail call. Can be used only on return statements, even for functions // returning void. Caller and callee must have the same number of arguments and // the argument types must be "similar". While the compiler may automatically // convert compatible calls to tail calls when optimizing, this annotation // requires it to occur if doing so is valid, and will not compile otherwise. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#musttail // // Usage: // ``` // int Func1(double); // int Func2(double d) { // MUSTTAIL return Func1(d + 1); // `Func1()` will be tail-called. // } // ``` #if __has_cpp_attribute(clang::musttail) #define MUSTTAIL [[clang::musttail]] #else #define MUSTTAIL #endif // Annotates a data member indicating it need not have an address distinct from // all other non-static data members of the class, and its tail padding may be // used for other objects' storage. This can have subtle and dangerous effects, // including on containing objects; use with caution. // // See also: // https://en.cppreference.com/w/cpp/language/attributes/no_unique_address // https://wg21.link/dcl.attr.nouniqueaddr // Usage: // ``` // // In the following struct, `t` might not have a unique address from `i`, // // and `t`'s tail padding (if any) may be reused by subsequent objects. // struct S { // int i; // NO_UNIQUE_ADDRESS T t; // }; // ``` // // Unfortunately MSVC ignores [[no_unique_address]] (see // https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#msvc-extensions-and-abi), // and clang-cl matches it for ABI compatibility reasons. We need to prefer // [[msvc::no_unique_address]] when available if we actually want any effect. #if __has_cpp_attribute(msvc::no_unique_address) #define NO_UNIQUE_ADDRESS [[msvc::no_unique_address]] #elif __has_cpp_attribute(no_unique_address) #define NO_UNIQUE_ADDRESS [[no_unique_address]] #else #define NO_UNIQUE_ADDRESS #endif // Annotates a function indicating it takes a `printf()`-style format string. // The compiler will check that the provided arguments match the type specifiers // in the format string. Useful to detect mismatched format strings/args. // // `format_param` is the one-based index of the format string parameter; // `dots_param` is the one-based index of the "..." parameter. // For `v*printf()` functions (which take a `va_list`), `dots_param` should be // 0. For member functions, the implicit `this` parameter is at index 1. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#format // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-format-function-attribute // // Usage: // ``` // PRINTF_FORMAT(1, 2) // void Print(const char* format, ...); // void Func() { // // The following call will not compile; diagnosed as format and argument // // types mismatching. // Print("%s", 1); // } // ``` #if __has_cpp_attribute(gnu::format) #define PRINTF_FORMAT(format_param, dots_param) \ [[gnu::format(printf, format_param, dots_param)]] #else #define PRINTF_FORMAT(format_param, dots_param) #endif // Annotates a function disabling the named sanitizer within its body. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#no-sanitize // https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation // // Usage: // ``` // NO_SANITIZE("cfi-icall") void Func() { // // CFI indirect call checks will not be performed in this body. // } // ``` #if __has_cpp_attribute(clang::no_sanitize) #define NO_SANITIZE(sanitizer) [[clang::no_sanitize(sanitizer)]] #else #define NO_SANITIZE(sanitizer) #endif // Annotates a pointer and size directing MSAN to treat that memory region as // fully initialized. Useful for e.g. code that deliberately reads uninitialized // data, such as a GC scavenging root set pointers from the stack. // // See also: // https://github.com/google/sanitizers/wiki/MemorySanitizer // // Usage: // ``` // T* ptr = ...; // // After the next statement, MSAN will assume `ptr` points to an // // initialized `T`. // MSAN_UNPOISON(ptr, sizeof(T)); // ``` #if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL) #include #define MSAN_UNPOISON(p, size) __msan_unpoison(p, size) #else #define MSAN_UNPOISON(p, size) #endif // Annotates a pointer and size directing MSAN to check whether that memory // region is initialized, as if it was being read from. If any bits are // uninitialized, crashes with an MSAN report. Useful for e.g. sanitizing data // MSAN won't be able to track, such as data that is about to be passed to // another process via shared memory. // // See also: // https://www.chromium.org/developers/testing/memorysanitizer/#debugging-msan-reports // // Usage: // ``` // T* ptr = ...; // // The following line will crash at runtime in MSAN builds if `ptr` does // // not point to an initialized `T`. // MSAN_CHECK_MEM_IS_INITIALIZED(ptr, sizeof(T)); // ``` #if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL) #define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) \ __msan_check_mem_is_initialized(p, size) #else #define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) #endif // Annotates a function disabling Control Flow Integrity checks due to perf // impact. // // See also: // https://clang.llvm.org/docs/ControlFlowIntegrity.html#performance // https://www.chromium.org/developers/testing/control-flow-integrity/#overhead-only-tested-on-x64 // // Usage: // ``` // DISABLE_CFI_PERF void Func() { // // CFI checks will not be performed in this body, due to perf reasons. // } // ``` #if !defined(DISABLE_CFI_PERF) #if defined(__clang__) && defined(OFFICIAL_BUILD) #define DISABLE_CFI_PERF NO_SANITIZE("cfi") #else #define DISABLE_CFI_PERF #endif #endif // Annotates a function disabling Control Flow Integrity indirect call checks. // NOTE: Prefer `DISABLE_CFI_DLSYM()` if you just need to allow calling of dlsym // functions. // // See also: // https://clang.llvm.org/docs/ControlFlowIntegrity.html#available-schemes // https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures // // Usage: // ``` // DISABLE_CFI_ICALL void Func() { // // CFI indirect call checks will not be performed in this body. // } // ``` #if !defined(DISABLE_CFI_ICALL) #if BUILDFLAG(IS_WIN) #define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") __declspec(guard(nocf)) #else #define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") #endif #endif // Annotates a function disabling Control Flow Integrity indirect call checks if // doing so is necessary to call dlsym functions. The checks are retained on // platforms where loaded modules participate in CFI (viz. Windows). // // See also: // https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures // // Usage: // ``` // DISABLE_CFI_DLSYM void Func() { // // On non-Windows platforms, CFI indirect call checks will not be // // performed in this body. // } // ``` #if !defined(DISABLE_CFI_DLSYM) #if BUILDFLAG(IS_WIN) #define DISABLE_CFI_DLSYM #else #define DISABLE_CFI_DLSYM DISABLE_CFI_ICALL #endif #endif // Evaluates to a string constant containing the function signature. // // See also: // https://clang.llvm.org/docs/LanguageExtensions.html#source-location-builtins // https://en.cppreference.com/w/c/language/function_definition#func // // Usage: // ``` // void Func(int arg) { // std::cout << PRETTY_FUNCTION; // Prints `void Func(int)` or similar. // } // ``` #if defined(COMPILER_GCC) #define PRETTY_FUNCTION __PRETTY_FUNCTION__ #elif defined(COMPILER_MSVC) #define PRETTY_FUNCTION __FUNCSIG__ #else #define PRETTY_FUNCTION __func__ #endif // Annotates a variable indicating that its storage should not be filled with a // fixed pattern when uninitialized. // // The `init_stack_vars` gn arg (enabled on most build configs) causes the // compiler to generate code that writes a fixed pattern into uninitialized // parts of all local variables, to mitigate security risks. In most cases, e.g. // when such memory is either never accessed or will be initialized later before // reading, the compiler is able to remove the additional stores, and any // remaining stores are unlikely to affect program performance. // // If hot code suffers unavoidable perf penalties, this can disable the // pattern-filling there. This should only be done when necessary, since reads // from uninitialized variables are not only UB, they can in practice allow // attackers to control logic by pre-filling the variable's memory with a // desirable value. // // NOTE: This behavior also increases the likelihood the compiler will generate // `memcpy()`/`memset()` calls to init variables. If this causes link errors for // targets that don't link against the CRT, this macro can help; you may instead // want 'configs -= [ "//build/config/compiler:default_init_stack_vars" ]' in // the relevant .gn file to disable this on the whole target. // // See also: // https://source.chromium.org/chromium/chromium/src/+/main:build/config/compiler/BUILD.gn;l=3088;drc=24ccaf63ff5b1883be1ebe5f979d917ce28b0131 // https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-ftrivial-auto-var-init // https://clang.llvm.org/docs/AttributeReference.html#uninitialized // // Usage: // ``` // // The following line declares `i` without ensuring it initially contains // // any particular pattern. // STACK_UNINITIALIZED int i; // ``` #if __has_cpp_attribute(clang::uninitialized) #define STACK_UNINITIALIZED [[clang::uninitialized]] #elif __has_cpp_attribute(gnu::uninitialized) #define STACK_UNINITIALIZED [[gnu::uninitialized]] #else #define STACK_UNINITIALIZED #endif // Annotates a function disabling stack canary checks. // // The `-fstack-protector` compiler flag (passed on most non-Windows builds) // causes the compiler to extend some function prologues and epilogues to set // and check a canary value, to detect stack buffer overflows and crash in // response. If hot code suffers unavoidable perf penalties, or intentionally // modifies the canary value, this can disable the behavior there. // // See also: // https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector // https://clang.llvm.org/docs/AttributeReference.html#no-stack-protector-safebuffers // // Usage: // ``` // NO_STACK_PROTECTOR void Func() { // // Stack canary checks will not be performed in this body. // } // ``` #if __has_cpp_attribute(gnu::no_stack_protector) #define NO_STACK_PROTECTOR [[gnu::no_stack_protector]] #elif __has_cpp_attribute(gnu::optimize) #define NO_STACK_PROTECTOR [[gnu::optimize("-fno-stack-protector")]] #else #define NO_STACK_PROTECTOR #endif // Annotates a codepath suppressing static analysis along that path. Useful when // code is safe in practice for reasons the analyzer can't detect, e.g. because // the condition leading to that path guarantees a param is non-null. // // Usage: // ``` // if (cond) { // ANALYZER_SKIP_THIS_PATH(); // // Static analysis will be disabled for the remainder of this block. // delete ptr; // } // ``` #if defined(__clang_analyzer__) inline constexpr bool AnalyzerNoReturn() #if HAS_ATTRIBUTE(analyzer_noreturn) __attribute__((analyzer_noreturn)) #endif { return false; } #define ANALYZER_SKIP_THIS_PATH() static_cast(::AnalyzerNoReturn()) #else // The above definition would be safe even outside the analyzer, but defining // the macro away entirely avoids the need for the optimizer to eliminate it. #define ANALYZER_SKIP_THIS_PATH() #endif // Annotates a condition directing static analysis to assume it is always true. // Evaluates to the provided `arg` as a `bool`. // // Usage: // ``` // // Static analysis will assume the following condition always holds. // if (ANALYZER_ASSUME_TRUE(cond)) ... // ``` #if defined(__clang_analyzer__) inline constexpr bool AnalyzerAssumeTrue(bool arg) { return arg || AnalyzerNoReturn(); } #define ANALYZER_ASSUME_TRUE(arg) ::AnalyzerAssumeTrue(!!(arg)) #else // Again, the above definition is safe, this is just simpler for the optimizer. #define ANALYZER_ASSUME_TRUE(arg) (arg) #endif // Annotates a function, function pointer, or statement to disallow // optimizations that merge calls. Useful to ensure the source locations of such // calls are not obscured. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#nomerge // // Usage: // ``` // NOMERGE void Func(); // No direct calls to `Func()` will be merged. // // using Ptr = decltype(&Func); // NOMERGE Ptr ptr = &Func; // No calls through `ptr` will be merged. // // NOMERGE if (cond) { // // No calls in this block will be merged. // } // ``` #if __has_cpp_attribute(clang::nomerge) #define NOMERGE [[clang::nomerge]] #else #define NOMERGE #endif // Annotates a type as being suitable for passing in registers despite having a // non-trivial copy or move constructor or destructor. This requires the type // not be concerned about its address remaining constant, be safely usable after // copying its memory, and have a destructor that may be safely omitted on // moved-from instances; an example is `std::unique_ptr`. Unnecessary if the // copy/move constructor(s) and destructor are unconditionally trivial; likely // ineffective if the type is too large to be passed in one or two registers // with the target ABI. However, annotating a type this way will also cause // `IS_TRIVIALLY_RELOCATABLE()` to return true for that type, and so may be // desirable even for large types, if they are placed in containers that // optimize based on that check. // // NOTE: Use with caution; this has subtle effects on constructor/destructor // ordering. When used with types passed or returned by value, values may be // constructed in the source stack frame, passed in a register, and then used // and destroyed in the target stack frame. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#trivial-abi // https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html // // Usage: // ``` // // Instances of type `S` will be eligible to be passed in registers despite // // `S`'s nontrivial destructor. // struct TRIVIAL_ABI S { ~S(); } // ``` #if __has_cpp_attribute(clang::trivial_abi) #define TRIVIAL_ABI [[clang::trivial_abi]] #else #define TRIVIAL_ABI #endif // Determines whether a type is trivially relocatable, i.e. a move-and-destroy // sequence can safely be replaced with `memcpy()`. This is true of types with // trivial copy or move construction plus trivial destruction, as well as types // marked `TRIVIAL_ABI`. Useful to optimize container implementations. // // See also: // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r8.html // https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__is_trivially_relocatable // // Usage: // ``` // if constexpr (IS_TRIVIALLY_RELOCATABLE(T)) { // // This block will only be executed if type `T` is trivially relocatable. // } // ``` #if HAS_BUILTIN(__is_trivially_relocatable) #define IS_TRIVIALLY_RELOCATABLE(t) __is_trivially_relocatable(t) #else #define IS_TRIVIALLY_RELOCATABLE(t) false #endif // Annotates a member function as safe to call on a moved-from object, which it // will reinitialize. // // See also: // https://clang.llvm.org/extra/clang-tidy/checks/bugprone/use-after-move.html#reinitialization // // Usage: // ``` // struct S { // REINITIALIZES_AFTER_MOVE void Reset(); // }; // void Func1(const S&); // void Func2() { // S s1; // S s2 = std::move(s1); // s1.Reset(); // // clang-tidy's `bugprone-use-after-move` check will not flag the // // following call as a use-after-move, due to the intervening `Reset()`. // Func1(s1); // } // ``` #if __has_cpp_attribute(clang::reinitializes) #define REINITIALIZES_AFTER_MOVE [[clang::reinitializes]] #else #define REINITIALIZES_AFTER_MOVE #endif // Annotates a type as owning an object or memory region whose address may be // vended to or stored by other objects. For example, `std::unique_ptr` owns // a `T` and vends its address via `.get()`, and `std::string` owns a block of // `char` and vends its address via `.data()`. Used to detect lifetime errors in // conjunction with `GSL_POINTER`; see documentation there. // // See also: // https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership // https://clang.llvm.org/docs/AttributeReference.html#owner // https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl // // Usage: // ``` // // Marking `S` as `GSL_OWNER` enables `-Wdangling-gsl` to detect misuse by // // types annotated as `GSL_POINTER`. // struct GSL_OWNER S; // ``` #if __has_cpp_attribute(gsl::Owner) #define GSL_OWNER [[gsl::Owner]] #else #define GSL_OWNER #endif // Annotates a type as holding a pointer into an owner object (an appropriate // STL or `GSL_OWNER`-annotated type). If an instance of the pointer type is // constructed from an instance of the owner type, and the owner instance is // destroyed, the pointer instance is considered to be dangling. Useful to // diagnose some cases of lifetime errors. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#pointer // // Usage: // ``` // struct GSL_OWNER T {}; // struct GSL_POINTER S { // S(const T&); // }; // S Func() { // // The following return will not compile; diagnosed as returning address // // of local temporary. // return S(T()); // } // ``` #if __has_cpp_attribute(gsl::Pointer) #define GSL_POINTER [[gsl::Pointer]] #else #define GSL_POINTER #endif // Annotates a type or variable to add a "logically_const" ABI tag to any // corresponding mangled symbol name(s). Useful to suppress warnings from the // "Mutable Constants" trybot check [1] when logically const instances are named // like `kConstants` but for some reason should not be marked `const`. // // [1]: // https://chromium.googlesource.com/chromium/src/+/main/docs/speed/binary_size/android_binary_size_trybot.md#Mutable-Constants // // Usage: // ``` // struct S {}; // S kConstS; // Fails on some trybots. // LOGICALLY_CONST S kAlsoConstS; // OK // // struct LOGICALLY_CONST T {}; // T kConstT; // OK // ``` #if __has_cpp_attribute(gnu::abi_tag) #define LOGICALLY_CONST [[gnu::abi_tag("logically_const")]] #else #define LOGICALLY_CONST #endif // Annotates a function indicating it is cold, but called from hot functions. // Useful when a performance-sensitive function is usually simple, but in edge // cases must fall back to a more complex handler. // // On X86-64 and AArch64, this changes the calling convention so most registers // are callee-saved, reducing register spills in the caller. This can improve // caller performance in the common case, at the cost of pessimizing the callee. // On other platforms, this attribute has no effect as of Clang 20. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#preserve-most // // Usage: // ``` // // Calls to this function will not require most registers to be saved. // PRESERVE_MOST void Func(); // ``` // // Disable `PRESERVE_MOST` in component builds, since `_dl_runtime_resolve()` // clobbers registers on platforms where it's used, and the component build is // not perf-critical anyway; see // https://github.com/llvm/llvm-project/issues/105588. // // Also disable for Win ARM64 due to as-yet-uninvestigated crashes. // TODO(crbug.com/42204008): Investigate, fix, and re-enable. #if __has_cpp_attribute(clang::preserve_most) && \ (defined(ARCH_CPU_ARM64) || defined(ARCH_CPU_X86_64)) && \ !defined(COMPONENT_BUILD) && \ !(BUILDFLAG(IS_WIN) && defined(ARCH_CPU_ARM64)) #define PRESERVE_MOST [[clang::preserve_most]] #else #define PRESERVE_MOST #endif // Annotates a pointer or reference parameter or return value for a member // function as having lifetime intertwined with the instance on which the // function is called. For parameters, the function is assumed to store the // value into the called-on object, so if the referred-to object is later // destroyed, the called-on object is also considered to be dangling. For return // values, the value is assumed to point into the called-on object, so if that // object is destroyed, the returned value is also considered to be dangling. // Useful to diagnose some cases of lifetime errors. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#lifetimebound // // Usage: // ``` // struct S { // S(int* p LIFETIME_BOUND); // int* Get() LIFETIME_BOUND; // }; // S Func1() { // int i = 0; // // The following return will not compile; diagnosed as returning address // // of a stack object. // return S(&i); // } // int* Func2(int* p) { // // The following return will not compile; diagnosed as returning address // // of a local temporary. // return S(p).Get(); // } // ``` #if __has_cpp_attribute(clang::lifetimebound) #define LIFETIME_BOUND [[clang::lifetimebound]] #else #define LIFETIME_BOUND #endif // Annotates a function or variable to indicate that it should have weak // linkage. Useful for library code that wants code linking against it to be // able to override its functionality; inside a single target, this is better // accomplished via virtual methods and other more standard mechanisms. // // Any weak definition of a symbol will be overridden at link time by a non-weak // definition. Marking a `const` or `constexpr` variable weak makes it no longer // be considered a compile-time constant, since its value may be different after // linking. // // Multiple weak definitions of a symbol may exist, in which case the linker is // free to select any when there are no non-weak definitions. Like with symbols // marked `inline`, this can lead to subtle, difficult-to-diagnose bugs if not // all definitions are identical. // // A weak declaration that has no definitions at link time will be linked as if // the corresponding address is null. Therefore library code can use weak // declarations and conditionals to allow consumers to provide optional // customizations. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#weak // // Usage: // ``` // // The following definition defaults `x` to 10, but allows other object // // files to override its value. Thus, despite `constexpr`, `x` is not // // considered a compile-time constant (and cannot be used in a `constexpr` // // context). // extern const int x; // WEAK_SYMBOL constexpr int x = 10; // // // The following declaration allows linking to occur whether a definition // // of `Func()` is provided or not; if none is present, `&Func` will // // evaluate to `nullptr` at runtime. // WEAK_SYMBOL void Func(); // // // The following definition provides a default implementation of `Func2()`, // // but allows other object files to override. // WEAK_SYMBOL void Func2() { ... } // ``` #if __has_cpp_attribute(gnu::weak) #define WEAK_SYMBOL [[gnu::weak]] #else #define WEAK_SYMBOL #endif // Annotates a function indicating that the compiler should not convert calls // within it to tail calls. // // For a callee-side version of this, see `NOT_TAIL_CALLED`. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#disable-tail-calls // Usage: // ``` // DISABLE_TAIL_CALLS void Func() { // // Function calls in this body will not be tail calls. // } // ``` #if __has_cpp_attribute(clang::disable_tail_calls) #define DISABLE_TAIL_CALLS [[clang::disable_tail_calls]] #else #define DISABLE_TAIL_CALLS #endif // Annotates a type or member indicating the minimum possible alignment (one bit // for bitfields, one byte otherwise) should be used. This can be used to // eliminate padding inside objects, at the cost of potentially pessimizing // code, or even generating invalid code (depending on platform restrictions) if // underaligned objects have their addresses taken and passed elsewhere. // // This is similar to the more-broadly-supported `#pragma pack(1)`. // // See also: // https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-packed-variable-attribute // // Usage: // ``` // struct PACKED_OBJ S1 { // int8_t a; // Alignment 1, offset 0, size 1 // int32_t b; // Alignment 1, offset 1 (0 bytes padding), size 4 // }; // Overall alignment 1, 0 bytes trailing padding, overall size 5 // // struct S2 { // int8_t a; // Alignment 1, offset 0, size 1 // int32_t b; // Alignment 4, offset 4 (3 bytes padding), size 4 // int8_t c; // Alignment 1, offset 8 (0 bytes padding), size 1 // PACKED_OBJ int32_t d; // Alignment 1, offset 9 (0 bytes padding), size 4 // }; // Overall alignment 4, 3 bytes trailing padding, overall size 16 // ``` #if __has_cpp_attribute(gnu::packed) #define PACKED_OBJ [[gnu::packed]] #else #define PACKED_OBJ #endif // Annotates a function indicating that the returned pointer will never be null. // This may allow the compiler to assume null checks on the caller side are // unnecessary. // // In practice, this is usually better-handled by returning a value or // reference, which enforce such guarantees at the type level. // // See also: // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-returns_005fnonnull-function-attribute // https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes // // Usage: // ``` // // The following function will never return `nullptr`. // RETURNS_NONNULL int* Func(); // ``` #if __has_cpp_attribute(gnu::returns_nonnull) #define RETURNS_NONNULL [[gnu::returns_nonnull]] #else #define RETURNS_NONNULL #endif // Annotates a function indicating it is const, meaning that it has no // observable side effects and its return value depends only on its arguments. // Const functions may not read external memory other than unchanging objects // (e.g. non-volatile constants), and the compiler is free to replace calls to // them with the return values of earlier calls with the same arguments no // matter what other state might have changed in the meantime. // // This is a much stronger restriction than `const`-qualified functions, and is // rarely appropriate outside small local helpers, which are frequently // inlineable anyway and would not really benefit. // // WARNING: Misusing this attribute can lead to silent miscompilation, UB, and // difficult-to-diagnose bugs. For this and the above reason, usage should be // very rare. // // See also: // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-const-function-attribute // // Usage: // ``` // // The compiler may replace calls to this function with values returned // // from earlier calls, assuming the args match. // CONST_FUNCTION int Func(int); // ``` #if __has_cpp_attribute(gnu::const) #define CONST_FUNCTION [[gnu::const]] #else #define CONST_FUNCTION #endif // Annotates a function indicating it is pure, meaning that it has no observable // side effects. Unlike functions annotated `CONST_FUNCTION`, pure functions may // still read external memory, and thus their return values may change between // calls. `strlen()` and `memcmp()` are examples of pure functions. Useful to // allow folding/reordering calls for optimization purposes. // // WARNING: Misusing this attribute can lead to silent miscompilation, UB, and // difficult-to-diagnose bugs. Because apparently-safe invocations can sometimes // have side effects (especially when invoking "overridable" functionality like // virtual or templated methods), such misuse is far more likely than it seems. // Therefore, this macro should generally be used only in key vocabulary types, // where the perf and ergonomic benefits of callers not needing to worry about // caching results in local variables in hot code outweighs the risks. // // See also: // https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-pure-function-attribute // // Usage: // ``` // // Calls to this function may be subject to more aggressive common // // subexpression (CSE) optimization. // PURE_FUNCTION int Func(int); // ``` #if __has_cpp_attribute(gnu::pure) #define PURE_FUNCTION [[gnu::pure]] #else #define PURE_FUNCTION #endif // Annotates a function or class data member indicating it can lead to // out-of-bounds accesses (OOB) if given incorrect inputs. // // For functions, this commonly includes functions which take pointers, sizes, // iterators, sentinels, etc. and cannot fully check their preconditions (e.g. // that the provided pointer actually points to an allocation of at least the // provided size). Useful to diagnose potential misuse via // `-Wunsafe-buffer-usage`, as well as to mark functions potentially in need of // safer alternatives. // // For fields, this would be used to annotate both pointer and size fields that // have not yet been converted to a span. // // All functions or fields annotated with this macro should come with a `# // Safety` comment that explains what the caller must guarantee to prevent OOB. // Ideally, unsafe functions should also be paired with a safer version, e.g. // one that replaces pointer parameters with `span`s; otherwise, document safer // replacement coding patterns callers can migrate to. // // Annotating a function `UNSAFE_BUFFER_USAGE` means all call sites (that do not // disable the warning) must wrap calls in `UNSAFE_BUFFERS()`; see documentation // there. Annotating a field `UNSAFE_BUFFER_USAGE` means that `UNSAFE_BUFFERS()` // must wrap expressions that mutate of the field. // // See also: // https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md // https://clang.llvm.org/docs/SafeBuffers.html // https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage // // Usage: // ``` // // Calls to this function must be wrapped in `UNSAFE_BUFFERS()`. // UNSAFE_BUFFER_USAGE void Func(T* input, T* end); // // struct S { // // Changing this pointer requires `UNSAFE_BUFFERS()`. // UNSAFE_BUFFER_USAGE int* p; // }; // ``` #if __has_cpp_attribute(clang::unsafe_buffer_usage) #define UNSAFE_BUFFER_USAGE [[clang::unsafe_buffer_usage]] #else #define UNSAFE_BUFFER_USAGE #endif // Annotates code indicating that it should be permanently exempted from // `-Wunsafe-buffer-usage`. For temporary cases such as migrating callers to // safer patterns, use `UNSAFE_TODO()` instead; see documentation there. // // All calls to functions annotated with `UNSAFE_BUFFER_USAGE` must be marked // with one of these two macros; they can also be used around pointer // arithmetic, pointer subscripting, and the like. // // ** USE OF THIS MACRO SHOULD BE VERY RARE.** Using this macro indicates that // the compiler cannot verify that the code avoids OOB, and manual review is // required. Even with manual review, it's easy for assumptions to change and // security bugs to creep in over time. Prefer safer patterns instead. // // Usage should wrap the minimum necessary code, and *must* include a // `// SAFETY: ...` comment that explains how the code guarantees safety or // meets the requirements of called `UNSAFE_BUFFER_USAGE` functions. Guarantees // must be manually verifiable by the Chrome security team using only local // invariants; contact security@chromium.org to schedule such a review. Valid // invariants include: // - Runtime conditions or `CHECK()`s nearby // - Invariants guaranteed by types in the surrounding code // - Invariants guaranteed by function calls in the surrounding code // - Caller requirements, if the containing function is itself annotated with // `UNSAFE_BUFFER_USAGE`; this is less safe and should be a last resort // // See also: // https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md // https://clang.llvm.org/docs/SafeBuffers.html // https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage // // Usage: // ``` // // The following call will not trigger a compiler warning even if `Func()` // // is annotated `UNSAFE_BUFFER_USAGE`. // return UNSAFE_BUFFERS(Func(input, end)); // ``` // // Test for `__clang__` directly, as there's no `__has_pragma` or similar (see // https://github.com/llvm/llvm-project/issues/51887). #if defined(__clang__) // Disabling `clang-format` allows each `_Pragma` to be on its own line, as // recommended by https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html. // clang-format off #define UNSAFE_BUFFERS(...) \ _Pragma("clang unsafe_buffer_usage begin") \ __VA_ARGS__ \ _Pragma("clang unsafe_buffer_usage end") // clang-format on #else #define UNSAFE_BUFFERS(...) __VA_ARGS__ #endif // Annotates code indicating that it should be temporarily exempted from // `-Wunsafe-buffer-usage`. While this is functionally the same as // `UNSAFE_BUFFERS()`, semantically it indicates that this is for migration // purposes, and should be cleaned up as soon as possible. // // Usage: // ``` // // The following call will not trigger a compiler warning even if `Func()` // // is annotated `UNSAFE_BUFFER_USAGE`. // return UNSAFE_TODO(Func(input, end)); // ``` #define UNSAFE_TODO(...) UNSAFE_BUFFERS(__VA_ARGS__) // Annotates a function restricting its availability based on compile-time // information in the evaluated context. Useful to convert runtime errors to // compile-time errors if functions' arguments are always known at compile time. // // SFINAE and `requires` clauses can restrict function availability based on the // unevaluated context (type information and syntactic correctness). This // provides a similar capability based on the evaluated context (variable // values). If the condition fails, or cannot be determined at compile time, the // function is excluded from the overload set. // // Some use cases could be satisfied without this by marking the function // `consteval` and breaking compile when the condition fails (e.g. via // `CHECK()`/`assert()`). However, `ENABLE_IF_ATTR()` is generally superior: // - Not all desired functions can be made `consteval`; e.g. most // constructors. // - The error message in the macro case is clearer and more actionable. // - `ENABLE_IF_ATTR()` interacts better with template metaprogramming. // // See also: // https://clang.llvm.org/docs/AttributeReference.html#enable-if // https://github.com/chromium/subspace/issues/266 // // Usage: // ``` // void NotConsteval(int a) { // assert(a > 0); // } // consteval void WithoutEnableIf(int a) { // assert(a > 0); // } // void WithEnableIf(int a) ENABLE_IF_ATTR(a > 0, "arg must be positive") {} // void Func(int i) { // // Compiles; assertion fails at runtime. // NotConsteval(-1); // // // Will not compile; diagnosed as not a constant expression. // WithoutEnableIf(-1); // // // Will not compile; diagnosed as no matching function call with // // "note: candidate disabled: arg must be positive". // WithEnableIf(-1); // // // Will not compile (same reason). Marking `Func()` as // // `ENABLE_IF_ATTR(i > 0, ...)` will not help; the compiler's analysis is // // not sufficiently sophisticated to propagate this constraint. // WithEnableIf(i); // } // ``` #if HAS_ATTRIBUTE(enable_if) #define ENABLE_IF_ATTR(cond, msg) __attribute__((enable_if(cond, msg))) #else #define ENABLE_IF_ATTR(cond, msg) #endif #endif // BASE_COMPILER_SPECIFIC_H_