// Copyright 2023 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/strings/levenshtein_distance.h" #include #include #include #include #include #include namespace base { namespace { template size_t LevenshteinDistanceImpl(std::basic_string_view a, std::basic_string_view b, std::optional max_distance) { if (a.size() > b.size()) { a.swap(b); } // max(a.size(), b.size()) steps always suffice. const size_t k = max_distance.value_or(b.size()); // If the string's lengths differ by more than `k`, so does their // Levenshtein distance. if (a.size() + k < b.size()) { return k + 1; } // The classical Levenshtein distance DP defines dp[i][j] as the minimum // number of insert, remove and replace operation to convert a[:i] to b[:j]. // To make this more efficient, one can define dp[i][d] as the distance of // a[:i] and b[:i + d]. Intuitively, d represents the delta between j and i in // the former dp. Since the Levenshtein distance is restricted by `k`, abs(d) // can be bounded by `k`. Since dp[i][d] only depends on values from dp[i-1], // it is not necessary to store the entire 2D table. Instead, this code just // stores the d-dimension, which represents "the distance with the current // prefix of the string, for a given delta d". Since d is between `-k` and // `k`, the implementation shifts the d-index by `k`, bringing it in range // [0, `2*k`]. // The algorithm only cares if the Levenshtein distance is at most `k`. Thus, // any unreachable states and states in which the distance is certainly larger // than `k` can be set to any value larger than `k`, without affecting the // result. const size_t kInfinity = k + 1; std::vector dp(2 * k + 1, kInfinity); // Initially, `dp[d]` represents the Levenshtein distance of the empty prefix // of `a` and the first j = d - k characters of `b`. Their distance is j, // since j removals are required. States with negative d are not reachable, // since that corresponds to a negative index into `b`. std::iota(dp.begin() + static_cast(k), dp.end(), 0); for (size_t i = 0; i < a.size(); i++) { // Right now, `dp` represents the Levenshtein distance when considering the // first `i` characters (up to index `i-1`) of `a`. After the next loop, // `dp` will represent the Levenshtein distance when considering the first // `i+1` characters. for (size_t d = 0; d <= 2 * k; d++) { if (i + d < k || i + d >= b.size() + k) { // `j = i + d - k` is out of range of `b`. Since j == -1 corresponds to // the empty prefix of `b`, the distance is i + 1 in this case. dp[d] = i + d + 1 == k ? i + 1 : kInfinity; continue; } const size_t j = i + d - k; // If `a[i] == `b[j]` the Levenshtein distance for `d` remained the same. if (a[i] != b[j]) { // (i, j) -> (i-1, j-1), `d` stays the same. const size_t replace = dp[d]; // (i, j) -> (i-1, j), `d` increases by 1. // If the distance between `i` and `j` becomes larger than `k`, their // distance is at least `k + 1`. Same in the `insert` case. const size_t remove = d != 2 * k ? dp[d + 1] : kInfinity; // (i, j) -> (i, j-1), `d` decreases by 1. Since `i` stays the same, // this is intentionally using the dp value updated in the previous // iteration. const size_t insert = d != 0 ? dp[d - 1] : kInfinity; dp[d] = 1 + std::min({replace, remove, insert}); } } } return std::min(dp[b.size() + k - a.size()], k + 1); } } // namespace size_t LevenshteinDistance(std::string_view a, std::string_view b, std::optional max_distance) { return LevenshteinDistanceImpl(a, b, max_distance); } size_t LevenshteinDistance(std::u16string_view a, std::u16string_view b, std::optional max_distance) { return LevenshteinDistanceImpl(a, b, max_distance); } } // namespace base