// Copyright 2015 The Chromium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifdef UNSAFE_BUFFERS_BUILD // TODO(crbug.com/40284755): Remove this and spanify to fix the errors. #pragma allow_unsafe_buffers #endif #include "net/base/ip_address.h" #include #include #include #include #include #include #include "base/check_op.h" #include "base/debug/alias.h" #include "base/debug/crash_logging.h" #include "base/logging.h" #include "base/notreached.h" #include "base/ranges/algorithm.h" #include "base/strings/strcat.h" #include "base/strings/string_split.h" #include "base/strings/stringprintf.h" #include "base/trace_event/memory_usage_estimator.h" #include "base/values.h" #include "net/base/parse_number.h" #include "url/gurl.h" #include "url/url_canon_ip.h" namespace net { namespace { // The prefix for IPv6 mapped IPv4 addresses. // https://tools.ietf.org/html/rfc4291#section-2.5.5.2 constexpr uint8_t kIPv4MappedPrefix[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF}; // Note that this function assumes: // * |ip_address| is at least |prefix_length_in_bits| (bits) long; // * |ip_prefix| is at least |prefix_length_in_bits| (bits) long. bool IPAddressPrefixCheck(const IPAddressBytes& ip_address, const uint8_t* ip_prefix, size_t prefix_length_in_bits) { // Compare all the bytes that fall entirely within the prefix. size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8; for (size_t i = 0; i < num_entire_bytes_in_prefix; ++i) { if (ip_address[i] != ip_prefix[i]) return false; } // In case the prefix was not a multiple of 8, there will be 1 byte // which is only partially masked. size_t remaining_bits = prefix_length_in_bits % 8; if (remaining_bits != 0) { uint8_t mask = 0xFF << (8 - remaining_bits); size_t i = num_entire_bytes_in_prefix; if ((ip_address[i] & mask) != (ip_prefix[i] & mask)) return false; } return true; } bool CreateIPMask(IPAddressBytes* ip_address, size_t prefix_length_in_bits, size_t ip_address_length) { if (ip_address_length != IPAddress::kIPv4AddressSize && ip_address_length != IPAddress::kIPv6AddressSize) { return false; } if (prefix_length_in_bits > ip_address_length * 8) { return false; } ip_address->Resize(ip_address_length); size_t idx = 0; // Set all fully masked bytes size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8; for (size_t i = 0; i < num_entire_bytes_in_prefix; ++i) { (*ip_address)[idx++] = 0xff; } // In case the prefix was not a multiple of 8, there will be 1 byte // which is only partially masked. size_t remaining_bits = prefix_length_in_bits % 8; if (remaining_bits != 0) { uint8_t remaining_bits_mask = 0xFF << (8 - remaining_bits); (*ip_address)[idx++] = remaining_bits_mask; } // Zero out any other bytes. size_t bytes_remaining = ip_address_length - num_entire_bytes_in_prefix - (remaining_bits != 0 ? 1 : 0); for (size_t i = 0; i < bytes_remaining; ++i) { (*ip_address)[idx++] = 0; } return true; } // Returns false if |ip_address| matches any of the reserved IPv4 ranges. This // method operates on a list of reserved IPv4 ranges. Some ranges are // consolidated. // Sources for info: // www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml // www.iana.org/assignments/iana-ipv4-special-registry/ // iana-ipv4-special-registry.xhtml bool IsPubliclyRoutableIPv4(const IPAddressBytes& ip_address) { // Different IP versions have different range reservations. DCHECK_EQ(IPAddress::kIPv4AddressSize, ip_address.size()); struct { const uint8_t address[4]; size_t prefix_length_in_bits; } static const kReservedIPv4Ranges[] = { {{0, 0, 0, 0}, 8}, {{10, 0, 0, 0}, 8}, {{100, 64, 0, 0}, 10}, {{127, 0, 0, 0}, 8}, {{169, 254, 0, 0}, 16}, {{172, 16, 0, 0}, 12}, {{192, 0, 0, 0}, 24}, {{192, 0, 2, 0}, 24}, {{192, 88, 99, 0}, 24}, {{192, 168, 0, 0}, 16}, {{198, 18, 0, 0}, 15}, {{198, 51, 100, 0}, 24}, {{203, 0, 113, 0}, 24}, {{224, 0, 0, 0}, 3}}; for (const auto& range : kReservedIPv4Ranges) { if (IPAddressPrefixCheck(ip_address, range.address, range.prefix_length_in_bits)) { return false; } } return true; } // Returns false if |ip_address| matches any of the IPv6 ranges IANA reserved // for local networks. This method operates on an allowlist of non-reserved // IPv6 ranges, plus the list of reserved IPv4 ranges mapped to IPv6. // Sources for info: // www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml bool IsPubliclyRoutableIPv6(const IPAddressBytes& ip_address) { DCHECK_EQ(IPAddress::kIPv6AddressSize, ip_address.size()); struct { const uint8_t address_prefix[2]; size_t prefix_length_in_bits; } static const kPublicIPv6Ranges[] = {// 2000::/3 -- Global Unicast {{0x20, 0}, 3}, // ff00::/8 -- Multicast {{0xff, 0}, 8}}; for (const auto& range : kPublicIPv6Ranges) { if (IPAddressPrefixCheck(ip_address, range.address_prefix, range.prefix_length_in_bits)) { return true; } } IPAddress addr(ip_address); if (addr.IsIPv4MappedIPv6()) { IPAddress ipv4 = ConvertIPv4MappedIPv6ToIPv4(addr); return IsPubliclyRoutableIPv4(ipv4.bytes()); } return false; } bool ParseIPLiteralToBytes(std::string_view ip_literal, IPAddressBytes* bytes) { // |ip_literal| could be either an IPv4 or an IPv6 literal. If it contains // a colon however, it must be an IPv6 address. if (ip_literal.find(':') != std::string_view::npos) { // GURL expects IPv6 hostnames to be surrounded with brackets. std::string host_brackets = base::StrCat({"[", ip_literal, "]"}); url::Component host_comp(0, host_brackets.size()); // Try parsing the hostname as an IPv6 literal. bytes->Resize(16); // 128 bits. return url::IPv6AddressToNumber(host_brackets.data(), host_comp, bytes->data()); } // Otherwise the string is an IPv4 address. bytes->Resize(4); // 32 bits. url::Component host_comp(0, ip_literal.size()); int num_components; url::CanonHostInfo::Family family = url::IPv4AddressToNumber( ip_literal.data(), host_comp, bytes->data(), &num_components); return family == url::CanonHostInfo::IPV4; } } // namespace IPAddressBytes::IPAddressBytes() : size_(0) {} IPAddressBytes::IPAddressBytes(base::span data) { Assign(data); } IPAddressBytes::~IPAddressBytes() = default; IPAddressBytes::IPAddressBytes(IPAddressBytes const& other) = default; void IPAddressBytes::Assign(base::span data) { CHECK_GE(16u, data.size()); size_ = data.size(); base::span(*this).copy_from(data); } bool IPAddressBytes::operator<(const IPAddressBytes& other) const { if (size_ == other.size_) return std::lexicographical_compare(begin(), end(), other.begin(), other.end()); return size_ < other.size_; } bool IPAddressBytes::operator==(const IPAddressBytes& other) const { return base::ranges::equal(*this, other); } bool IPAddressBytes::operator!=(const IPAddressBytes& other) const { return !(*this == other); } void IPAddressBytes::Append(base::span data) { CHECK_LE(data.size(), static_cast(16 - size_)); size_ += data.size(); base::span(*this).last(data.size()).copy_from(data); } size_t IPAddressBytes::EstimateMemoryUsage() const { return base::trace_event::EstimateMemoryUsage(bytes_); } // static std::optional IPAddress::FromValue(const base::Value& value) { if (!value.is_string()) { return std::nullopt; } return IPAddress::FromIPLiteral(value.GetString()); } // static std::optional IPAddress::FromIPLiteral(std::string_view ip_literal) { IPAddress address; if (!address.AssignFromIPLiteral(ip_literal)) { return std::nullopt; } DCHECK(address.IsValid()); return address; } IPAddress::IPAddress() = default; IPAddress::IPAddress(const IPAddress& other) = default; IPAddress::IPAddress(const IPAddressBytes& address) : ip_address_(address) {} IPAddress::IPAddress(base::span address) : ip_address_(address) {} IPAddress::IPAddress(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3) { const uint8_t bytes[] = {b0, b1, b2, b3}; ip_address_.Assign(bytes); } IPAddress::IPAddress(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5, uint8_t b6, uint8_t b7, uint8_t b8, uint8_t b9, uint8_t b10, uint8_t b11, uint8_t b12, uint8_t b13, uint8_t b14, uint8_t b15) { const uint8_t bytes[] = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}; ip_address_.Assign(bytes); } IPAddress::~IPAddress() = default; bool IPAddress::IsIPv4() const { return ip_address_.size() == kIPv4AddressSize; } bool IPAddress::IsIPv6() const { return ip_address_.size() == kIPv6AddressSize; } bool IPAddress::IsValid() const { return IsIPv4() || IsIPv6(); } bool IPAddress::IsPubliclyRoutable() const { if (IsIPv4()) { return IsPubliclyRoutableIPv4(ip_address_); } else if (IsIPv6()) { return IsPubliclyRoutableIPv6(ip_address_); } return true; } bool IPAddress::IsZero() const { for (auto x : ip_address_) { if (x != 0) return false; } return !empty(); } bool IPAddress::IsIPv4MappedIPv6() const { return IsIPv6() && IPAddressStartsWith(*this, kIPv4MappedPrefix); } bool IPAddress::IsLoopback() const { // 127.0.0.1/8 if (IsIPv4()) return ip_address_[0] == 127; // ::1 if (IsIPv6()) { for (size_t i = 0; i + 1 < ip_address_.size(); ++i) { if (ip_address_[i] != 0) return false; } return ip_address_.back() == 1; } return false; } bool IPAddress::IsLinkLocal() const { // 169.254.0.0/16 if (IsIPv4()) return (ip_address_[0] == 169) && (ip_address_[1] == 254); // [::ffff:169.254.0.0]/112 if (IsIPv4MappedIPv6()) return (ip_address_[12] == 169) && (ip_address_[13] == 254); // [fe80::]/10 if (IsIPv6()) return (ip_address_[0] == 0xFE) && ((ip_address_[1] & 0xC0) == 0x80); return false; } bool IPAddress::IsUniqueLocalIPv6() const { // [fc00::]/7 return IsIPv6() && ((ip_address_[0] & 0xFE) == 0xFC); } bool IPAddress::AssignFromIPLiteral(std::string_view ip_literal) { bool success = ParseIPLiteralToBytes(ip_literal, &ip_address_); if (!success) ip_address_.Resize(0); return success; } std::vector IPAddress::CopyBytesToVector() const { return std::vector(ip_address_.begin(), ip_address_.end()); } // static IPAddress IPAddress::IPv4Localhost() { static const uint8_t kLocalhostIPv4[] = {127, 0, 0, 1}; return IPAddress(kLocalhostIPv4); } // static IPAddress IPAddress::IPv6Localhost() { static const uint8_t kLocalhostIPv6[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; return IPAddress(kLocalhostIPv6); } // static IPAddress IPAddress::AllZeros(size_t num_zero_bytes) { CHECK_LE(num_zero_bytes, 16u); IPAddress result; for (size_t i = 0; i < num_zero_bytes; ++i) result.ip_address_.push_back(0u); return result; } // static IPAddress IPAddress::IPv4AllZeros() { return AllZeros(kIPv4AddressSize); } // static IPAddress IPAddress::IPv6AllZeros() { return AllZeros(kIPv6AddressSize); } // static bool IPAddress::CreateIPv4Mask(IPAddress* ip_address, size_t mask_prefix_length) { return CreateIPMask(&(ip_address->ip_address_), mask_prefix_length, kIPv4AddressSize); } // static bool IPAddress::CreateIPv6Mask(IPAddress* ip_address, size_t mask_prefix_length) { return CreateIPMask(&(ip_address->ip_address_), mask_prefix_length, kIPv6AddressSize); } bool IPAddress::operator==(const IPAddress& that) const { return ip_address_ == that.ip_address_; } bool IPAddress::operator!=(const IPAddress& that) const { return ip_address_ != that.ip_address_; } bool IPAddress::operator<(const IPAddress& that) const { // Sort IPv4 before IPv6. if (ip_address_.size() != that.ip_address_.size()) { return ip_address_.size() < that.ip_address_.size(); } return ip_address_ < that.ip_address_; } std::string IPAddress::ToString() const { std::string str; url::StdStringCanonOutput output(&str); if (IsIPv4()) { url::AppendIPv4Address(ip_address_.data(), &output); } else if (IsIPv6()) { url::AppendIPv6Address(ip_address_.data(), &output); } output.Complete(); return str; } base::Value IPAddress::ToValue() const { DCHECK(IsValid()); return base::Value(ToString()); } size_t IPAddress::EstimateMemoryUsage() const { return base::trace_event::EstimateMemoryUsage(ip_address_); } std::string IPAddressToStringWithPort(const IPAddress& address, uint16_t port) { std::string address_str = address.ToString(); if (address_str.empty()) return address_str; if (address.IsIPv6()) { // Need to bracket IPv6 addresses since they contain colons. return base::StringPrintf("[%s]:%d", address_str.c_str(), port); } return base::StringPrintf("%s:%d", address_str.c_str(), port); } std::string IPAddressToPackedString(const IPAddress& address) { return std::string(reinterpret_cast(address.bytes().data()), address.size()); } IPAddress ConvertIPv4ToIPv4MappedIPv6(const IPAddress& address) { CHECK(address.IsIPv4()); // IPv4-mapped addresses are formed by: // <80 bits of zeros> + <16 bits of ones> + <32-bit IPv4 address>. IPAddressBytes bytes; bytes.Append(kIPv4MappedPrefix); bytes.Append(address.bytes()); return IPAddress(bytes); } IPAddress ConvertIPv4MappedIPv6ToIPv4(const IPAddress& address) { DCHECK(address.IsIPv4MappedIPv6()); IPAddressBytes bytes; bytes.Append( base::span(address.bytes()).subspan(std::size(kIPv4MappedPrefix))); return IPAddress(bytes); } bool IPAddressMatchesPrefix(const IPAddress& ip_address, const IPAddress& ip_prefix, size_t prefix_length_in_bits) { // Both the input IP address and the prefix IP address should be either IPv4 // or IPv6. CHECK(ip_address.IsValid()); CHECK(ip_prefix.IsValid()); CHECK_LE(prefix_length_in_bits, ip_prefix.size() * 8); // In case we have an IPv6 / IPv4 mismatch, convert the IPv4 addresses to // IPv6 addresses in order to do the comparison. if (ip_address.size() != ip_prefix.size()) { if (ip_address.IsIPv4()) { return IPAddressMatchesPrefix(ConvertIPv4ToIPv4MappedIPv6(ip_address), ip_prefix, prefix_length_in_bits); } return IPAddressMatchesPrefix(ip_address, ConvertIPv4ToIPv4MappedIPv6(ip_prefix), 96 + prefix_length_in_bits); } return IPAddressPrefixCheck(ip_address.bytes(), ip_prefix.bytes().data(), prefix_length_in_bits); } bool ParseCIDRBlock(std::string_view cidr_literal, IPAddress* ip_address, size_t* prefix_length_in_bits) { // We expect CIDR notation to match one of these two templates: // "/" // "/" std::vector parts = base::SplitStringPiece( cidr_literal, "/", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL); if (parts.size() != 2) return false; // Parse the IP address. if (!ip_address->AssignFromIPLiteral(parts[0])) return false; // Parse the prefix length. uint32_t number_of_bits; if (!ParseUint32(parts[1], ParseIntFormat::NON_NEGATIVE, &number_of_bits)) { return false; } // Make sure the prefix length is in a valid range. if (number_of_bits > ip_address->size() * 8) return false; *prefix_length_in_bits = number_of_bits; return true; } bool ParseURLHostnameToAddress(std::string_view hostname, IPAddress* ip_address) { if (hostname.size() >= 2 && hostname.front() == '[' && hostname.back() == ']') { // Strip the square brackets that surround IPv6 literals. auto ip_literal = std::string_view(hostname).substr(1, hostname.size() - 2); return ip_address->AssignFromIPLiteral(ip_literal) && ip_address->IsIPv6(); } return ip_address->AssignFromIPLiteral(hostname) && ip_address->IsIPv4(); } size_t CommonPrefixLength(const IPAddress& a1, const IPAddress& a2) { DCHECK_EQ(a1.size(), a2.size()); for (size_t i = 0; i < a1.size(); ++i) { unsigned diff = a1.bytes()[i] ^ a2.bytes()[i]; if (!diff) continue; for (unsigned j = 0; j < CHAR_BIT; ++j) { if (diff & (1 << (CHAR_BIT - 1))) return i * CHAR_BIT + j; diff <<= 1; } NOTREACHED(); } return a1.size() * CHAR_BIT; } size_t MaskPrefixLength(const IPAddress& mask) { IPAddressBytes all_ones; all_ones.Resize(mask.size()); std::fill(all_ones.begin(), all_ones.end(), 0xFF); return CommonPrefixLength(mask, IPAddress(all_ones)); } Dns64PrefixLength ExtractPref64FromIpv4onlyArpaAAAA(const IPAddress& address) { DCHECK(address.IsIPv6()); IPAddress ipv4onlyarpa0(192, 0, 0, 170); IPAddress ipv4onlyarpa1(192, 0, 0, 171); auto span = base::span(address.bytes()); if (base::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(12u)) || base::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(12u))) { return Dns64PrefixLength::k96bit; } if (base::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(9u, 4u)) || base::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(9u, 4u))) { return Dns64PrefixLength::k64bit; } IPAddressBytes ipv4; ipv4.Append(span.subspan(7u, 1u)); ipv4.Append(span.subspan(9u, 3u)); if (base::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) || base::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) { return Dns64PrefixLength::k56bit; } ipv4 = IPAddressBytes(); ipv4.Append(span.subspan(6u, 2u)); ipv4.Append(span.subspan(9u, 2u)); if (base::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) || base::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) { return Dns64PrefixLength::k48bit; } ipv4 = IPAddressBytes(); ipv4.Append(span.subspan(5u, 3u)); ipv4.Append(span.subspan(9u, 1u)); if (base::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) || base::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) { return Dns64PrefixLength::k40bit; } if (base::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(4u, 4u)) || base::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(4u, 4u))) { return Dns64PrefixLength::k32bit; } // if ipv4onlyarpa address is not found return 0 return Dns64PrefixLength::kInvalid; } IPAddress ConvertIPv4ToIPv4EmbeddedIPv6(const IPAddress& ipv4_address, const IPAddress& ipv6_address, Dns64PrefixLength prefix_length) { DCHECK(ipv4_address.IsIPv4()); DCHECK(ipv6_address.IsIPv6()); IPAddressBytes bytes; constexpr uint8_t kZeroBits[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; switch (prefix_length) { case Dns64PrefixLength::k96bit: bytes.Append(base::span(ipv6_address.bytes()).first(12u)); bytes.Append(ipv4_address.bytes()); return IPAddress(bytes); case Dns64PrefixLength::k64bit: bytes.Append(base::span(ipv6_address.bytes()).first(8u)); bytes.Append(base::span(kZeroBits).first(1u)); bytes.Append(ipv4_address.bytes()); bytes.Append(base::span(kZeroBits).first(3u)); return IPAddress(bytes); case Dns64PrefixLength::k56bit: { bytes.Append(base::span(ipv6_address.bytes()).first(7u)); auto [first, second] = base::span(ipv4_address.bytes()).split_at(1u); bytes.Append(first); bytes.Append(base::span(kZeroBits).first(1u)); bytes.Append(second); bytes.Append(base::span(kZeroBits).first(4u)); return IPAddress(bytes); } case Dns64PrefixLength::k48bit: { bytes.Append(base::span(ipv6_address.bytes()).first(6u)); auto [first, second] = base::span(ipv4_address.bytes()).split_at(2u); bytes.Append(first); bytes.Append(base::span(kZeroBits).first(1u)); bytes.Append(second); bytes.Append(base::span(kZeroBits).first(5u)); return IPAddress(bytes); } case Dns64PrefixLength::k40bit: { bytes.Append(base::span(ipv6_address.bytes()).first(5u)); auto [first, second] = base::span(ipv4_address.bytes()).split_at(3u); bytes.Append(first); bytes.Append(base::span(kZeroBits).first(1u)); bytes.Append(second); bytes.Append(base::span(kZeroBits).first(6u)); return IPAddress(bytes); } case Dns64PrefixLength::k32bit: bytes.Append(base::span(ipv6_address.bytes()).first(4u)); bytes.Append(ipv4_address.bytes()); bytes.Append(base::span(kZeroBits).first(8u)); return IPAddress(bytes); case Dns64PrefixLength::kInvalid: return ipv4_address; } } } // namespace net