/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "drmhwc" #include "VSyncWorker.h" #include #include #include #include #include #include "drm/ResourceManager.h" #include "utils/log.h" namespace android { auto VSyncWorker::CreateInstance(std::shared_ptr &pipe) -> std::unique_ptr { auto vsw = std::unique_ptr(new VSyncWorker()); if (pipe) { vsw->high_crtc_ = pipe->crtc->Get()->GetIndexInResArray() << DRM_VBLANK_HIGH_CRTC_SHIFT; vsw->drm_fd_ = pipe->device->GetFd(); } vsw->vswt_ = std::thread(&VSyncWorker::ThreadFn, vsw.get()); return vsw; } VSyncWorker::~VSyncWorker() { StopThread(); vswt_.join(); } void VSyncWorker::UpdateVSyncControl() { { const std::lock_guard lock(mutex_); enabled_ = ShouldEnable(); } cv_.notify_all(); } void VSyncWorker::SetVsyncPeriodNs(uint32_t vsync_period_ns) { const std::lock_guard lock(mutex_); vsync_period_ns_ = vsync_period_ns; last_timestamp_ = std::nullopt; } void VSyncWorker::SetVsyncTimestampTracking(bool enabled) { { const std::lock_guard lock(mutex_); enable_vsync_timestamps_ = enabled; if (enabled) { // Reset the freshness flag to ensure that only a fresh timestamp is // returned from GetLastVsyncTimestamp. last_timestamp_is_fresh_ = false; } } UpdateVSyncControl(); } uint32_t VSyncWorker::GetLastVsyncTimestamp() { const std::lock_guard lock(mutex_); return last_timestamp_is_fresh_ ? last_timestamp_.value_or(0) : 0; } int64_t VSyncWorker::GetNextVsyncTimestamp(int64_t time) { const std::lock_guard lock(mutex_); return GetPhasedVSync(vsync_period_ns_, time); } void VSyncWorker::SetTimestampCallback( std::optional &&callback) { { const std::lock_guard lock(mutex_); callback_ = std::move(callback); } UpdateVSyncControl(); } void VSyncWorker::StopThread() { { const std::lock_guard lock(mutex_); thread_exit_ = true; enabled_ = false; } cv_.notify_all(); } bool VSyncWorker::ShouldEnable() const { return enable_vsync_timestamps_ || callback_.has_value(); }; /* * Returns the timestamp of the next vsync in phase with last_timestamp_. * For example: * last_timestamp_ = 137 * frame_ns = 50 * current = 683 * * ret = (50 * ((683 - 137)/50 + 1)) + 137 * ret = 687 * * Thus, we must sleep until timestamp 687 to maintain phase with the last * timestamp. */ int64_t VSyncWorker::GetPhasedVSync(int64_t frame_ns, int64_t current) const { if (!last_timestamp_.has_value()) return current + frame_ns; return (frame_ns * ((current - *last_timestamp_) / frame_ns + 1)) + *last_timestamp_; } static const int64_t kOneSecondNs = 1LL * 1000 * 1000 * 1000; int VSyncWorker::SyntheticWaitVBlank(int64_t *timestamp) { int64_t phased_timestamp = 0; { std::lock_guard lock(mutex_); int64_t time_now = ResourceManager::GetTimeMonotonicNs(); phased_timestamp = GetPhasedVSync(vsync_period_ns_, time_now); } struct timespec vsync {}; vsync.tv_sec = int(phased_timestamp / kOneSecondNs); vsync.tv_nsec = int(phased_timestamp - (vsync.tv_sec * kOneSecondNs)); int ret = 0; do { ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &vsync, nullptr); } while (ret == EINTR); if (ret != 0) return ret; *timestamp = phased_timestamp; return 0; } void VSyncWorker::ThreadFn() { int ret = 0; for (;;) { { std::unique_lock lock(mutex_); // Thread safety analysis doesn't understand std::unique_lock. #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wthread-safety-analysis" if (thread_exit_) break; if (!enabled_) cv_.wait(lock); if (!enabled_) continue; #pragma clang diagnostic pop } ret = -EAGAIN; int64_t timestamp = 0; drmVBlank vblank{}; if (drm_fd_) { vblank.request.type = (drmVBlankSeqType)(DRM_VBLANK_RELATIVE | (high_crtc_ & DRM_VBLANK_HIGH_CRTC_MASK)); vblank.request.sequence = 1; ret = drmWaitVBlank(*drm_fd_, &vblank); if (ret == -EINTR) continue; } if (ret != 0) { ret = SyntheticWaitVBlank(×tamp); if (ret != 0) continue; } else { constexpr int kUsToNsMul = 1000; timestamp = (int64_t)vblank.reply.tval_sec * kOneSecondNs + (int64_t)vblank.reply.tval_usec * kUsToNsMul; } std::optional vsync_callback; int64_t vsync_period_ns = 0; { const std::lock_guard lock(mutex_); if (!enabled_) continue; if (enable_vsync_timestamps_) { last_timestamp_is_fresh_ = true; } vsync_callback = callback_; vsync_period_ns = vsync_period_ns_; last_timestamp_ = timestamp; } if (vsync_callback) { vsync_callback.value()(timestamp, vsync_period_ns); } } ALOGI("VSyncWorker thread exit"); } } // namespace android