/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "drmhwc" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include "HwcDisplay.h" #include #include #include "backend/Backend.h" #include "backend/BackendManager.h" #include "bufferinfo/BufferInfoGetter.h" #include "compositor/DisplayInfo.h" #include "drm/DrmConnector.h" #include "drm/DrmDisplayPipeline.h" #include "drm/DrmHwc.h" #include "utils/log.h" #include "utils/properties.h" using ::android::DrmDisplayPipeline; using ColorGamut = ::android::ColorSpace; namespace android { namespace { constexpr int kCtmRows = 3; constexpr int kCtmCols = 3; constexpr std::array kIdentityMatrix = { 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, 0.0F, 0.0F, 0.0F, 0.0F, 1.0F, }; bool float_equals(float a, float b) { const float epsilon = 0.001F; return std::abs(a - b) < epsilon; } uint64_t To3132FixPt(float in) { constexpr uint64_t kSignMask = (1ULL << 63); constexpr uint64_t kValueMask = ~(1ULL << 63); constexpr auto kValueScale = static_cast(1ULL << 32); if (in < 0) return (static_cast(-in * kValueScale) & kValueMask) | kSignMask; return static_cast(in * kValueScale) & kValueMask; } bool TransformHasOffsetValue(const float *matrix) { for (int i = 12; i < 14; i++) { if (!float_equals(matrix[i], 0.F)) { ALOGW("DRM API does not support CTM with offsets."); return true; } } return false; } auto ToColorTransform(const std::array &color_transform_matrix) { /* HAL provides a 4x4 float type matrix: * | 0 1 2 3| * | 4 5 6 7| * | 8 9 10 11| * |12 13 14 15| * * R_out = R*0 + G*4 + B*8 + 12 * G_out = R*1 + G*5 + B*9 + 13 * B_out = R*2 + G*6 + B*10 + 14 * * DRM expects a 3x3 s31.32 fixed point matrix: * out matrix in * |R| |0 1 2| |R| * |G| = |3 4 5| x |G| * |B| |6 7 8| |B| * * R_out = R*0 + G*1 + B*2 * G_out = R*3 + G*4 + B*5 * B_out = R*6 + G*7 + B*8 */ auto color_matrix = std::make_shared(); for (int i = 0; i < kCtmCols; i++) { for (int j = 0; j < kCtmRows; j++) { constexpr int kInCtmRows = 4; color_matrix->matrix[(i * kCtmRows) + j] = To3132FixPt( color_transform_matrix[(j * kInCtmRows) + i]); } } return color_matrix; } } // namespace std::string HwcDisplay::DumpDelta(HwcDisplay::Stats delta) { if (delta.total_pixops_ == 0) return "No stats yet"; auto ratio = 1.0 - (double(delta.gpu_pixops_) / double(delta.total_pixops_)); std::stringstream ss; ss << " Total frames count: " << delta.total_frames_ << "\n" << " Failed to test commit frames: " << delta.failed_kms_validate_ << "\n" << " Failed to commit frames: " << delta.failed_kms_present_ << "\n" << ((delta.failed_kms_present_ > 0) ? " !!! Internal failure, FIX it please\n" : "") << " Flattened frames: " << delta.frames_flattened_ << "\n" << " Pixel operations (free units)" << " : [TOTAL: " << delta.total_pixops_ << " / GPU: " << delta.gpu_pixops_ << "]\n" << " Composition efficiency: " << ratio; return ss.str(); } std::string HwcDisplay::Dump() { auto connector_name = IsInHeadlessMode() ? std::string("NULL-DISPLAY") : GetPipe().connector->Get()->GetName(); std::stringstream ss; ss << "- Display on: " << connector_name << "\n" << "Statistics since system boot:\n" << DumpDelta(total_stats_) << "\n\n" << "Statistics since last dumpsys request:\n" << DumpDelta(total_stats_.minus(prev_stats_)) << "\n\n"; memcpy(&prev_stats_, &total_stats_, sizeof(Stats)); return ss.str(); } HwcDisplay::HwcDisplay(hwc2_display_t handle, HWC2::DisplayType type, DrmHwc *hwc) : hwc_(hwc), handle_(handle), type_(type), client_layer_(this) { if (type_ == HWC2::DisplayType::Virtual) { writeback_layer_ = std::make_unique(this); } identity_color_matrix_ = ToColorTransform(kIdentityMatrix); } void HwcDisplay::SetColorTransformMatrix( const std::array &color_transform_matrix) { const bool is_identity = std::equal(color_transform_matrix.begin(), color_transform_matrix.end(), kIdentityMatrix.begin(), float_equals); color_transform_hint_ = is_identity ? HAL_COLOR_TRANSFORM_IDENTITY : HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX; ctm_has_offset_ = false; if (color_transform_hint_ == is_identity) { SetColorMatrixToIdentity(); } else { if (TransformHasOffsetValue(color_transform_matrix.data())) ctm_has_offset_ = true; color_matrix_ = ToColorTransform(color_transform_matrix); } } void HwcDisplay::SetColorMatrixToIdentity() { color_matrix_ = identity_color_matrix_; color_transform_hint_ = HAL_COLOR_TRANSFORM_IDENTITY; } HwcDisplay::~HwcDisplay() { Deinit(); }; auto HwcDisplay::GetConfig(hwc2_config_t config_id) const -> const HwcDisplayConfig * { auto config_iter = configs_.hwc_configs.find(config_id); if (config_iter == configs_.hwc_configs.end()) { return nullptr; } return &config_iter->second; } auto HwcDisplay::GetCurrentConfig() const -> const HwcDisplayConfig * { return GetConfig(configs_.active_config_id); } auto HwcDisplay::GetLastRequestedConfig() const -> const HwcDisplayConfig * { return GetConfig(staged_mode_config_id_.value_or(configs_.active_config_id)); } HWC2::Error HwcDisplay::SetOutputType(uint32_t hdr_output_type) { switch (hdr_output_type) { case 3: { // HDR10 auto ret = SetHdrOutputMetadata(ui::Hdr::HDR10); if (ret != HWC2::Error::None) return ret; min_bpc_ = 8; colorspace_ = Colorspace::kBt2020Rgb; break; } case 1: { // SYSTEM std::vector hdr_types; GetEdid()->GetSupportedHdrTypes(hdr_types); if (!hdr_types.empty()) { auto ret = SetHdrOutputMetadata(hdr_types.front()); if (ret != HWC2::Error::None) return ret; min_bpc_ = 8; colorspace_ = Colorspace::kBt2020Rgb; break; } else { [[fallthrough]]; } } case 0: // INVALID [[fallthrough]]; case 2: // SDR [[fallthrough]]; default: hdr_metadata_ = std::make_shared(); min_bpc_ = 6; colorspace_ = Colorspace::kDefault; } return HWC2::Error::None; } HwcDisplay::ConfigError HwcDisplay::SetConfig(hwc2_config_t config) { const HwcDisplayConfig *new_config = GetConfig(config); if (new_config == nullptr) { ALOGE("Could not find active mode for %u", config); return ConfigError::kBadConfig; } const HwcDisplayConfig *current_config = GetCurrentConfig(); const uint32_t width = new_config->mode.GetRawMode().hdisplay; const uint32_t height = new_config->mode.GetRawMode().vdisplay; std::optional modeset_layer_data; // If a client layer has already been provided, and its size matches the // new config, use it for the modeset. if (client_layer_.IsLayerUsableAsDevice() && current_config && current_config->mode.GetRawMode().hdisplay == width && current_config->mode.GetRawMode().vdisplay == height) { ALOGV("Use existing client_layer for blocking config."); modeset_layer_data = client_layer_.GetLayerData(); } else { ALOGV("Allocate modeset buffer."); auto modeset_buffer = // GetPipe().device->CreateBufferForModeset(width, height); if (modeset_buffer) { auto modeset_layer = std::make_unique(this); HwcLayer::LayerProperties properties; properties.slot_buffer = { .slot_id = 0, .bi = modeset_buffer, }; properties.active_slot = { .slot_id = 0, .fence = {}, }; properties.blend_mode = BufferBlendMode::kNone; modeset_layer->SetLayerProperties(properties); modeset_layer->PopulateLayerData(); modeset_layer_data = modeset_layer->GetLayerData(); } } ALOGV("Create modeset commit."); SetOutputType(new_config->output_type); // Create atomic commit args for a blocking modeset. There's no need to do a // separate test commit, since the commit does a test anyways. AtomicCommitArgs commit_args = CreateModesetCommit(new_config, modeset_layer_data); commit_args.blocking = true; int ret = GetPipe().atomic_state_manager->ExecuteAtomicCommit(commit_args); if (ret) { ALOGE("Blocking config failed: %d", ret); return HwcDisplay::ConfigError::kConfigFailed; } ALOGV("Blocking config succeeded."); configs_.active_config_id = config; staged_mode_config_id_.reset(); vsync_worker_->SetVsyncPeriodNs(new_config->mode.GetVSyncPeriodNs()); // set new vsync period return ConfigError::kNone; } auto HwcDisplay::QueueConfig(hwc2_config_t config, int64_t desired_time, bool seamless, QueuedConfigTiming *out_timing) -> ConfigError { if (configs_.hwc_configs.count(config) == 0) { ALOGE("Could not find active mode for %u", config); return ConfigError::kBadConfig; } // TODO: Add support for seamless configuration changes. if (seamless) { return ConfigError::kSeamlessNotAllowed; } // Request a refresh from the client one vsync period before the desired // time, or simply at the desired time if there is no active configuration. const HwcDisplayConfig *current_config = GetCurrentConfig(); out_timing->refresh_time_ns = desired_time - (current_config ? current_config->mode.GetVSyncPeriodNs() : 0); out_timing->new_vsync_time_ns = desired_time; // Queue the config change timing to be consistent with the requested // refresh time. staged_mode_change_time_ = out_timing->refresh_time_ns; staged_mode_config_id_ = config; // Enable vsync events until the mode has been applied. vsync_worker_->SetVsyncTimestampTracking(true); return ConfigError::kNone; } auto HwcDisplay::ValidateStagedComposition() -> std::vector { if (IsInHeadlessMode()) { return {}; } /* In current drm_hwc design in case previous frame layer was not validated as * a CLIENT, it is used by display controller (Front buffer). We have to store * this state to provide the CLIENT with the release fences for such buffers. */ for (auto &l : layers_) { l.second.SetPriorBufferScanOutFlag(l.second.GetValidatedType() != HWC2::Composition::Client); } // ValidateDisplay returns the number of layers that may be changed. uint32_t num_types = 0; uint32_t num_requests = 0; backend_->ValidateDisplay(this, &num_types, &num_requests); if (num_types == 0) { return {}; } // Iterate through the layers to find which layers actually changed. std::vector changed_layers; for (auto &l : layers_) { if (l.second.IsTypeChanged()) { changed_layers.emplace_back(l.first, l.second.GetValidatedType()); } } return changed_layers; } auto HwcDisplay::GetDisplayBoundsMm() -> std::pair { const auto bounds = GetEdid()->GetBoundsMm(); if (bounds.first > 0 || bounds.second > 0) { return bounds; } ALOGE("Failed to get display bounds for d=%d\n", int(handle_)); // mm_width and mm_height are unreliable. so only provide mm_width to avoid // wrong dpi computations or other use of the values. return {configs_.mm_width, -1}; } auto HwcDisplay::AcceptValidatedComposition() -> void { for (auto &[_, layer] : layers_) { layer.AcceptTypeChange(); } } auto HwcDisplay::PresentStagedComposition( std::optional desired_present_time, SharedFd &out_present_fence, std::vector &out_release_fences) -> bool { if (IsInHeadlessMode()) { return true; } HWC2::Error ret{}; ++total_stats_.total_frames_; uint32_t vperiod_ns = 0; GetDisplayVsyncPeriod(&vperiod_ns); if (desired_present_time && vperiod_ns != 0) { // DRM atomic uAPI does not support specifying that a commit should be // applied to some future vsync. Until such uAPI is available, sleep in // userspace until the next expected vsync time is consistent with the // desired present time. WaitForPresentTime(desired_present_time.value(), vperiod_ns); } AtomicCommitArgs a_args{}; ret = CreateComposition(a_args); if (ret != HWC2::Error::None) ++total_stats_.failed_kms_present_; if (ret == HWC2::Error::BadLayer) { // Can we really have no client or device layers? return true; } if (ret != HWC2::Error::None) return false; out_present_fence = a_args.out_fence; // Reset the color matrix so we don't apply it over and over again. color_matrix_ = {}; ++frame_no_; if (!out_present_fence) { return true; } for (auto &l : layers_) { if (l.second.GetPriorBufferScanOutFlag()) { out_release_fences.emplace_back(l.first, out_present_fence); } } return true; } void HwcDisplay::SetPipeline(std::shared_ptr pipeline) { Deinit(); pipeline_ = std::move(pipeline); if (pipeline_ != nullptr || handle_ == kPrimaryDisplay) { Init(); hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kConnected); } else { hwc_->ScheduleHotplugEvent(handle_, DrmHwc::kDisconnected); } } void HwcDisplay::Deinit() { if (pipeline_ != nullptr) { AtomicCommitArgs a_args{}; a_args.composition = std::make_shared(); GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); a_args.composition = {}; a_args.active = false; GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); current_plan_.reset(); backend_.reset(); if (flatcon_) { flatcon_->StopThread(); flatcon_.reset(); } } if (vsync_worker_) { vsync_worker_->StopThread(); vsync_worker_ = {}; } client_layer_.ClearSlots(); } HWC2::Error HwcDisplay::Init() { ChosePreferredConfig(); if (type_ != HWC2::DisplayType::Virtual) { vsync_worker_ = VSyncWorker::CreateInstance(pipeline_); if (!vsync_worker_) { ALOGE("Failed to create event worker for d=%d\n", int(handle_)); return HWC2::Error::BadDisplay; } } if (!IsInHeadlessMode()) { auto ret = BackendManager::GetInstance().SetBackendForDisplay(this); if (ret) { ALOGE("Failed to set backend for d=%d %d\n", int(handle_), ret); return HWC2::Error::BadDisplay; } auto flatcbk = (struct FlatConCallbacks){ .trigger = [this]() { hwc_->SendRefreshEventToClient(handle_); }}; flatcon_ = FlatteningController::CreateInstance(flatcbk); } HwcLayer::LayerProperties lp; lp.blend_mode = BufferBlendMode::kPreMult; client_layer_.SetLayerProperties(lp); SetColorMatrixToIdentity(); return HWC2::Error::None; } std::optional HwcDisplay::getDisplayPhysicalOrientation() { if (IsInHeadlessMode()) { // The pipeline can be nullptr in headless mode, so return the default // "normal" mode. return PanelOrientation::kModePanelOrientationNormal; } DrmDisplayPipeline &pipeline = GetPipe(); if (pipeline.connector == nullptr || pipeline.connector->Get() == nullptr) { ALOGW( "No display pipeline present to query the panel orientation property."); return {}; } return pipeline.connector->Get()->GetPanelOrientation(); } HWC2::Error HwcDisplay::ChosePreferredConfig() { HWC2::Error err{}; if (type_ == HWC2::DisplayType::Virtual) { configs_.GenFakeMode(virtual_disp_width_, virtual_disp_height_); } else if (!IsInHeadlessMode()) { err = configs_.Update(*pipeline_->connector->Get()); } else { configs_.GenFakeMode(0, 0); } if (!IsInHeadlessMode() && err != HWC2::Error::None) { return HWC2::Error::BadDisplay; } return SetActiveConfig(configs_.preferred_config_id); } auto HwcDisplay::CreateLayer(ILayerId new_layer_id) -> bool { if (layers_.count(new_layer_id) > 0) return false; layers_.emplace(new_layer_id, HwcLayer(this)); return true; } auto HwcDisplay::DestroyLayer(ILayerId layer_id) -> bool { auto count = layers_.erase(layer_id); return count != 0; } HWC2::Error HwcDisplay::GetActiveConfig(hwc2_config_t *config) const { // If a config has been queued, it is considered the "active" config. const HwcDisplayConfig *hwc_config = GetLastRequestedConfig(); if (hwc_config == nullptr) return HWC2::Error::BadConfig; *config = hwc_config->id; return HWC2::Error::None; } HWC2::Error HwcDisplay::GetColorModes(uint32_t *num_modes, int32_t *modes) { if (IsInHeadlessMode()) { *num_modes = 1; if (modes) modes[0] = HAL_COLOR_MODE_NATIVE; return HWC2::Error::None; } if (!modes) { std::vector temp_modes; GetEdid()->GetColorModes(temp_modes); *num_modes = temp_modes.size(); return HWC2::Error::None; } std::vector temp_modes; std::vector out_modes(modes, modes + *num_modes); GetEdid()->GetColorModes(temp_modes); if (temp_modes.empty()) { out_modes.emplace_back(HAL_COLOR_MODE_NATIVE); return HWC2::Error::None; } for (auto &c : temp_modes) out_modes.emplace_back(static_cast(c)); return HWC2::Error::None; } HWC2::Error HwcDisplay::GetDisplayAttribute(hwc2_config_t config, int32_t attribute_in, int32_t *value) { int conf = static_cast(config); if (configs_.hwc_configs.count(conf) == 0) { ALOGE("Could not find mode #%d", conf); return HWC2::Error::BadConfig; } auto &hwc_config = configs_.hwc_configs[conf]; static const int32_t kUmPerInch = 25400; auto mm_width = configs_.mm_width; auto attribute = static_cast(attribute_in); switch (attribute) { case HWC2::Attribute::Width: *value = static_cast(hwc_config.mode.GetRawMode().hdisplay); break; case HWC2::Attribute::Height: *value = static_cast(hwc_config.mode.GetRawMode().vdisplay); break; case HWC2::Attribute::VsyncPeriod: // in nanoseconds *value = hwc_config.mode.GetVSyncPeriodNs(); break; case HWC2::Attribute::DpiY: *value = GetEdid()->GetDpiY(); if (*value < 0) { // default to raw mode DpiX for both x and y when no good value // can be provided from edid. *value = mm_width ? int(hwc_config.mode.GetRawMode().hdisplay * kUmPerInch / mm_width) : -1; } break; case HWC2::Attribute::DpiX: // Dots per 1000 inches *value = GetEdid()->GetDpiX(); if (*value < 0) { // default to raw mode DpiX for both x and y when no good value // can be provided from edid. *value = mm_width ? int(hwc_config.mode.GetRawMode().hdisplay * kUmPerInch / mm_width) : -1; } break; #if __ANDROID_API__ > 29 case HWC2::Attribute::ConfigGroup: /* Dispite ConfigGroup is a part of HWC2.4 API, framework * able to request it even if service @2.1 is used */ *value = int(hwc_config.group_id); break; #endif default: *value = -1; return HWC2::Error::BadConfig; } return HWC2::Error::None; } HWC2::Error HwcDisplay::LegacyGetDisplayConfigs(uint32_t *num_configs, hwc2_config_t *configs) { uint32_t idx = 0; for (auto &hwc_config : configs_.hwc_configs) { if (hwc_config.second.disabled) { continue; } if (configs != nullptr) { if (idx >= *num_configs) { break; } configs[idx] = hwc_config.second.id; } idx++; } *num_configs = idx; return HWC2::Error::None; } HWC2::Error HwcDisplay::GetDisplayName(uint32_t *size, char *name) { std::ostringstream stream; if (IsInHeadlessMode()) { stream << "null-display"; } else { stream << "display-" << GetPipe().connector->Get()->GetId(); } auto string = stream.str(); auto length = string.length(); if (!name) { *size = length; return HWC2::Error::None; } *size = std::min(static_cast(length - 1), *size); strncpy(name, string.c_str(), *size); return HWC2::Error::None; } HWC2::Error HwcDisplay::GetDisplayType(int32_t *type) { *type = static_cast(type_); return HWC2::Error::None; } HWC2::Error HwcDisplay::GetHdrCapabilities(uint32_t *num_types, int32_t *types, float *max_luminance, float *max_average_luminance, float *min_luminance) { if (IsInHeadlessMode()) { *num_types = 0; return HWC2::Error::None; } if (!types) { std::vector temp_types; float lums[3] = {0.F}; GetEdid()->GetHdrCapabilities(temp_types, &lums[0], &lums[1], &lums[2]); *num_types = temp_types.size(); return HWC2::Error::None; } std::vector temp_types; std::vector out_types(types, types + *num_types); GetEdid()->GetHdrCapabilities(temp_types, max_luminance, max_average_luminance, min_luminance); for (auto &t : temp_types) { switch (t) { case ui::Hdr::HDR10: out_types.emplace_back(HAL_HDR_HDR10); break; case ui::Hdr::HLG: out_types.emplace_back(HAL_HDR_HLG); break; default: // Ignore any other HDR types break; } } return HWC2::Error::None; } AtomicCommitArgs HwcDisplay::CreateModesetCommit( const HwcDisplayConfig *config, const std::optional &modeset_layer) { AtomicCommitArgs args{}; args.color_matrix = color_matrix_; args.content_type = content_type_; args.colorspace = colorspace_; args.hdr_metadata = hdr_metadata_; args.min_bpc = min_bpc_; std::vector composition_layers; if (modeset_layer) { composition_layers.emplace_back(modeset_layer.value()); } if (composition_layers.empty()) { ALOGW("Attempting to create a modeset commit without a layer."); } args.display_mode = config->mode; args.active = true; args.composition = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(), std::move( composition_layers)); ALOGW_IF(!args.composition, "No composition for blocking modeset"); return args; } void HwcDisplay::WaitForPresentTime(int64_t present_time, uint32_t vsync_period_ns) { const int64_t current_time = ResourceManager::GetTimeMonotonicNs(); int64_t next_vsync_time = vsync_worker_->GetNextVsyncTimestamp(current_time); int64_t vsync_after_present_time = vsync_worker_->GetNextVsyncTimestamp( present_time); int64_t vsync_before_present_time = vsync_after_present_time - vsync_period_ns; // Check if |present_time| is closer to the expected vsync before or after. int64_t desired_vsync = (vsync_after_present_time - present_time) < (present_time - vsync_before_present_time) ? vsync_after_present_time : vsync_before_present_time; // Don't sleep if desired_vsync is before or nearly equal to vsync_period of // the next expected vsync. const int64_t quarter_vsync_period = vsync_period_ns / 4; if ((desired_vsync - next_vsync_time) < quarter_vsync_period) { return; } // Sleep until 75% vsync_period before the desired_vsync. int64_t sleep_until = desired_vsync - (quarter_vsync_period * 3); struct timespec sleep_until_ts{}; constexpr int64_t kOneSecondNs = 1LL * 1000 * 1000 * 1000; sleep_until_ts.tv_sec = int(sleep_until / kOneSecondNs); sleep_until_ts.tv_nsec = int(sleep_until - (sleep_until_ts.tv_sec * kOneSecondNs)); clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &sleep_until_ts, nullptr); } // NOLINTNEXTLINE(readability-function-cognitive-complexity) HWC2::Error HwcDisplay::CreateComposition(AtomicCommitArgs &a_args) { if (IsInHeadlessMode()) { ALOGE("%s: Display is in headless mode, should never reach here", __func__); return HWC2::Error::None; } a_args.color_matrix = color_matrix_; a_args.content_type = content_type_; a_args.colorspace = colorspace_; a_args.hdr_metadata = hdr_metadata_; a_args.min_bpc = min_bpc_; uint32_t prev_vperiod_ns = 0; GetDisplayVsyncPeriod(&prev_vperiod_ns); std::optional new_vsync_period_ns; if (staged_mode_config_id_ && staged_mode_change_time_ <= ResourceManager::GetTimeMonotonicNs()) { const HwcDisplayConfig *staged_config = GetConfig( staged_mode_config_id_.value()); if (staged_config == nullptr) { return HWC2::Error::BadConfig; } configs_.active_config_id = staged_mode_config_id_.value(); a_args.display_mode = staged_config->mode; if (!a_args.test_only) { new_vsync_period_ns = staged_config->mode.GetVSyncPeriodNs(); } } // order the layers by z-order size_t client_layer_count = 0; bool use_client_layer = false; uint32_t client_z_order = UINT32_MAX; std::map z_map; std::optional cursor_layer = std::nullopt; for (auto &[_, layer] : layers_) { switch (layer.GetValidatedType()) { case HWC2::Composition::Device: z_map.emplace(layer.GetZOrder(), &layer); break; case HWC2::Composition::Cursor: if (!cursor_layer.has_value()) { layer.PopulateLayerData(); cursor_layer = layer.GetLayerData(); } else { ALOGW("Detected multiple cursor layers"); z_map.emplace(layer.GetZOrder(), &layer); } break; case HWC2::Composition::Client: // Place it at the z_order of the lowest client layer use_client_layer = true; client_layer_count++; client_z_order = std::min(client_z_order, layer.GetZOrder()); break; default: continue; } } // CTM will be applied by the client, don't apply DRM CTM if (client_layer_count == layers_.size()) a_args.color_matrix = identity_color_matrix_; else a_args.color_matrix = color_matrix_; if (use_client_layer) { z_map.emplace(client_z_order, &client_layer_); client_layer_.PopulateLayerData(); if (!client_layer_.IsLayerUsableAsDevice()) { ALOGE_IF(!a_args.test_only, "Client layer must be always usable by DRM/KMS"); /* This may be normally triggered on validation of the first frame * containing CLIENT layer. At this moment client buffer is not yet * provided by the CLIENT. * This may be triggered once in HwcLayer lifecycle in case FB can't be * imported. For example when non-contiguous buffer is imported into * contiguous-only DRM/KMS driver. */ return HWC2::Error::BadLayer; } } if (z_map.empty()) return HWC2::Error::BadLayer; std::vector composition_layers; /* Import & populate */ for (std::pair &l : z_map) { l.second->PopulateLayerData(); } // now that they're ordered by z, add them to the composition for (std::pair &l : z_map) { if (!l.second->IsLayerUsableAsDevice()) { return HWC2::Error::BadLayer; } composition_layers.emplace_back(l.second->GetLayerData()); } /* Store plan to ensure shared planes won't be stolen by other display * in between of ValidateDisplay() and PresentDisplay() calls */ current_plan_ = DrmKmsPlan::CreateDrmKmsPlan(GetPipe(), std::move(composition_layers), cursor_layer); if (type_ == HWC2::DisplayType::Virtual) { writeback_layer_->PopulateLayerData(); if (!writeback_layer_->IsLayerUsableAsDevice()) { ALOGE("Output layer must be always usable by DRM/KMS"); return HWC2::Error::BadLayer; } a_args.writeback_fb = writeback_layer_->GetLayerData().fb; a_args.writeback_release_fence = writeback_layer_->GetLayerData() .acquire_fence; } if (!current_plan_) { ALOGE_IF(!a_args.test_only, "Failed to create DrmKmsPlan"); return HWC2::Error::BadConfig; } a_args.composition = current_plan_; auto ret = GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); if (ret) { ALOGE_IF(!a_args.test_only, "Failed to apply the frame composition ret=%d", ret); return HWC2::Error::BadParameter; } if (new_vsync_period_ns) { staged_mode_config_id_.reset(); vsync_worker_->SetVsyncTimestampTracking(false); uint32_t last_vsync_ts = vsync_worker_->GetLastVsyncTimestamp(); if (last_vsync_ts != 0) { hwc_->SendVsyncPeriodTimingChangedEventToClient(handle_, last_vsync_ts + prev_vperiod_ns); } vsync_worker_->SetVsyncPeriodNs(new_vsync_period_ns.value()); } return HWC2::Error::None; } HWC2::Error HwcDisplay::SetActiveConfigInternal(uint32_t config, int64_t change_time) { if (configs_.hwc_configs.count(config) == 0) { ALOGE("Could not find active mode for %u", config); return HWC2::Error::BadConfig; } staged_mode_change_time_ = change_time; staged_mode_config_id_ = config; if (const HwcDisplayConfig *new_config = GetConfig(config)) SetOutputType(new_config->output_type); return HWC2::Error::None; } HWC2::Error HwcDisplay::SetActiveConfig(hwc2_config_t config) { return SetActiveConfigInternal(config, ResourceManager::GetTimeMonotonicNs()); } HWC2::Error HwcDisplay::SetColorMode(int32_t mode) { /* Maps to the Colorspace DRM connector property: * https://elixir.bootlin.com/linux/v6.11/source/include/drm/drm_connector.h#L538 */ if (mode < HAL_COLOR_MODE_NATIVE || mode > HAL_COLOR_MODE_DISPLAY_BT2020) return HWC2::Error::BadParameter; switch (mode) { case HAL_COLOR_MODE_NATIVE: colorspace_ = Colorspace::kDefault; break; case HAL_COLOR_MODE_STANDARD_BT601_625: case HAL_COLOR_MODE_STANDARD_BT601_625_UNADJUSTED: case HAL_COLOR_MODE_STANDARD_BT601_525: case HAL_COLOR_MODE_STANDARD_BT601_525_UNADJUSTED: // The DP spec does not say whether this is the 525 or the 625 line version. colorspace_ = Colorspace::kBt601Ycc; break; case HAL_COLOR_MODE_STANDARD_BT709: case HAL_COLOR_MODE_SRGB: colorspace_ = Colorspace::kBt709Ycc; break; case HAL_COLOR_MODE_DCI_P3: case HAL_COLOR_MODE_DISPLAY_P3: colorspace_ = Colorspace::kDciP3RgbD65; break; case HAL_COLOR_MODE_DISPLAY_BT2020: case HAL_COLOR_MODE_ADOBE_RGB: case HAL_COLOR_MODE_BT2020: case HAL_COLOR_MODE_BT2100_PQ: case HAL_COLOR_MODE_BT2100_HLG: default: return HWC2::Error::Unsupported; } color_mode_ = mode; return HWC2::Error::None; } HWC2::Error HwcDisplay::SetColorTransform(const float *matrix, int32_t hint) { if (hint < HAL_COLOR_TRANSFORM_IDENTITY || hint > HAL_COLOR_TRANSFORM_CORRECT_TRITANOPIA) return HWC2::Error::BadParameter; if (!matrix && hint == HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX) return HWC2::Error::BadParameter; color_transform_hint_ = static_cast(hint); ctm_has_offset_ = false; if (IsInHeadlessMode()) return HWC2::Error::None; if (!GetPipe().crtc->Get()->GetCtmProperty()) return HWC2::Error::None; switch (color_transform_hint_) { case HAL_COLOR_TRANSFORM_IDENTITY: SetColorMatrixToIdentity(); break; case HAL_COLOR_TRANSFORM_ARBITRARY_MATRIX: // Without HW support, we cannot correctly process matrices with an offset. { if (TransformHasOffsetValue(matrix)) ctm_has_offset_ = true; std::array aidl_matrix = kIdentityMatrix; memcpy(aidl_matrix.data(), matrix, aidl_matrix.size() * sizeof(float)); color_matrix_ = ToColorTransform(aidl_matrix); } break; default: return HWC2::Error::Unsupported; } return HWC2::Error::None; } bool HwcDisplay::CtmByGpu() { if (color_transform_hint_ == HAL_COLOR_TRANSFORM_IDENTITY) return false; if (GetPipe().crtc->Get()->GetCtmProperty() && !ctm_has_offset_) return false; if (GetHwc()->GetResMan().GetCtmHandling() == CtmHandling::kDrmOrIgnore) return false; return true; } HWC2::Error HwcDisplay::SetPowerMode(int32_t mode_in) { auto mode = static_cast(mode_in); AtomicCommitArgs a_args{}; switch (mode) { case HWC2::PowerMode::Off: a_args.active = false; break; case HWC2::PowerMode::On: a_args.active = true; break; case HWC2::PowerMode::Doze: case HWC2::PowerMode::DozeSuspend: return HWC2::Error::Unsupported; default: ALOGE("Incorrect power mode value (%d)\n", mode_in); return HWC2::Error::BadParameter; } if (IsInHeadlessMode()) { return HWC2::Error::None; } if (a_args.active && *a_args.active) { /* * Setting the display to active before we have a composition * can break some drivers, so skip setting a_args.active to * true, as the next composition frame will implicitly activate * the display */ return GetPipe().atomic_state_manager->ActivateDisplayUsingDPMS() == 0 ? HWC2::Error::None : HWC2::Error::BadParameter; }; auto err = GetPipe().atomic_state_manager->ExecuteAtomicCommit(a_args); if (err) { ALOGE("Failed to apply the dpms composition err=%d", err); return HWC2::Error::BadParameter; } return HWC2::Error::None; } HWC2::Error HwcDisplay::SetVsyncEnabled(int32_t enabled) { if (type_ == HWC2::DisplayType::Virtual) { return HWC2::Error::None; } if (!vsync_worker_) { return HWC2::Error::NoResources; } vsync_event_en_ = HWC2_VSYNC_ENABLE == enabled; std::optional callback = std::nullopt; if (vsync_event_en_) { DrmHwc *hwc = hwc_; hwc2_display_t id = handle_; // Callback will be called from the vsync thread. callback = [hwc, id](int64_t timestamp, uint32_t period_ns) { hwc->SendVsyncEventToClient(id, timestamp, period_ns); }; } vsync_worker_->SetTimestampCallback(std::move(callback)); return HWC2::Error::None; } std::vector HwcDisplay::GetOrderLayersByZPos() { std::vector ordered_layers; ordered_layers.reserve(layers_.size()); for (auto &[handle, layer] : layers_) { ordered_layers.emplace_back(&layer); } std::sort(std::begin(ordered_layers), std::end(ordered_layers), [](const HwcLayer *lhs, const HwcLayer *rhs) { // Cursor layers should always have highest zpos. if ((lhs->GetSfType() == HWC2::Composition::Cursor) != (rhs->GetSfType() == HWC2::Composition::Cursor)) { return rhs->GetSfType() == HWC2::Composition::Cursor; } return lhs->GetZOrder() < rhs->GetZOrder(); }); return ordered_layers; } HWC2::Error HwcDisplay::GetDisplayVsyncPeriod( uint32_t *outVsyncPeriod /* ns */) { return GetDisplayAttribute(configs_.active_config_id, HWC2_ATTRIBUTE_VSYNC_PERIOD, (int32_t *)(outVsyncPeriod)); } // Display primary values are coded as unsigned 16-bit values in units of // 0.00002, where 0x0000 represents zero and 0xC350 represents 1.0000. static uint64_t ToU16ColorValue(float in) { constexpr float kPrimariesFixedPoint = 50000.F; return static_cast(kPrimariesFixedPoint * in); } HWC2::Error HwcDisplay::SetHdrOutputMetadata(ui::Hdr type) { hdr_metadata_ = std::make_shared(); hdr_metadata_->metadata_type = 0; auto *m = &hdr_metadata_->hdmi_metadata_type1; m->metadata_type = 0; switch (type) { case ui::Hdr::HDR10: m->eotf = 2; // PQ break; case ui::Hdr::HLG: m->eotf = 3; // HLG break; default: return HWC2::Error::Unsupported; } // Most luminance values are coded as an unsigned 16-bit value in units of 1 // cd/m2, where 0x0001 represents 1 cd/m2 and 0xFFFF represents 65535 cd/m2. std::vector types; float hdr_luminance[3]{0.F, 0.F, 0.F}; GetEdid()->GetHdrCapabilities(types, &hdr_luminance[0], &hdr_luminance[1], &hdr_luminance[2]); m->max_display_mastering_luminance = m->max_cll = static_cast( hdr_luminance[0]); m->max_fall = static_cast(hdr_luminance[1]); // The min luminance value is coded as an unsigned 16-bit value in units of // 0.0001 cd/m2, where 0x0001 represents 0.0001 cd/m2 and 0xFFFF // represents 6.5535 cd/m2. m->min_display_mastering_luminance = static_cast(hdr_luminance[2] * 10000.F); auto gamut = ColorGamut::BT2020(); auto primaries = gamut.getPrimaries(); m->display_primaries[0].x = ToU16ColorValue(primaries[0].x); m->display_primaries[0].y = ToU16ColorValue(primaries[0].y); m->display_primaries[1].x = ToU16ColorValue(primaries[1].x); m->display_primaries[1].y = ToU16ColorValue(primaries[1].y); m->display_primaries[2].x = ToU16ColorValue(primaries[2].x); m->display_primaries[2].y = ToU16ColorValue(primaries[2].y); auto whitePoint = gamut.getWhitePoint(); m->white_point.x = ToU16ColorValue(whitePoint.x); m->white_point.y = ToU16ColorValue(whitePoint.y); return HWC2::Error::None; } #if __ANDROID_API__ > 29 HWC2::Error HwcDisplay::GetDisplayConnectionType(uint32_t *outType) { if (IsInHeadlessMode()) { *outType = static_cast(HWC2::DisplayConnectionType::Internal); return HWC2::Error::None; } /* Primary display should be always internal, * otherwise SF will be unhappy and will crash */ if (GetPipe().connector->Get()->IsInternal() || handle_ == kPrimaryDisplay) *outType = static_cast(HWC2::DisplayConnectionType::Internal); else if (GetPipe().connector->Get()->IsExternal()) *outType = static_cast(HWC2::DisplayConnectionType::External); else return HWC2::Error::BadConfig; return HWC2::Error::None; } HWC2::Error HwcDisplay::SetActiveConfigWithConstraints( hwc2_config_t config, hwc_vsync_period_change_constraints_t *vsyncPeriodChangeConstraints, hwc_vsync_period_change_timeline_t *outTimeline) { if (type_ == HWC2::DisplayType::Virtual) { return HWC2::Error::None; } if (vsyncPeriodChangeConstraints == nullptr || outTimeline == nullptr) { return HWC2::Error::BadParameter; } uint32_t current_vsync_period{}; GetDisplayVsyncPeriod(¤t_vsync_period); if (vsyncPeriodChangeConstraints->seamlessRequired) { return HWC2::Error::SeamlessNotAllowed; } outTimeline->refreshTimeNanos = vsyncPeriodChangeConstraints ->desiredTimeNanos - current_vsync_period; auto ret = SetActiveConfigInternal(config, outTimeline->refreshTimeNanos); if (ret != HWC2::Error::None) { return ret; } outTimeline->refreshRequired = true; outTimeline->newVsyncAppliedTimeNanos = vsyncPeriodChangeConstraints ->desiredTimeNanos; vsync_worker_->SetVsyncTimestampTracking(true); return HWC2::Error::None; } HWC2::Error HwcDisplay::SetContentType(int32_t contentType) { /* Maps exactly to the content_type DRM connector property: * https://elixir.bootlin.com/linux/v6.11/source/include/uapi/drm/drm_mode.h#L107 */ if (contentType < HWC2_CONTENT_TYPE_NONE || contentType > HWC2_CONTENT_TYPE_GAME) return HWC2::Error::BadParameter; content_type_ = contentType; return HWC2::Error::None; } #endif #if __ANDROID_API__ > 28 HWC2::Error HwcDisplay::GetDisplayIdentificationData(uint8_t *outPort, uint32_t *outDataSize, uint8_t *outData) { if (IsInHeadlessMode()) { return HWC2::Error::Unsupported; } auto *connector = GetPipe().connector->Get(); auto blob = connector->GetEdidBlob(); if (!blob) { return HWC2::Error::Unsupported; } constexpr uint8_t kDrmDeviceBitShift = 5U; constexpr uint8_t kDrmDeviceBitMask = 0xE0; constexpr uint8_t kConnectorBitMask = 0x1F; const auto kDrmIdx = static_cast( connector->GetDev().GetIndexInDevArray()); const auto kConnectorIdx = static_cast( connector->GetIndexInResArray()); *outPort = (((kDrmIdx << kDrmDeviceBitShift) & kDrmDeviceBitMask) | (kConnectorIdx & kConnectorBitMask)); if (outData) { *outDataSize = std::min(*outDataSize, blob->length); memcpy(outData, blob->data, *outDataSize); } else { *outDataSize = blob->length; } return HWC2::Error::None; } HWC2::Error HwcDisplay::GetDisplayCapabilities(uint32_t *outNumCapabilities, uint32_t *outCapabilities) { if (outNumCapabilities == nullptr) { return HWC2::Error::BadParameter; } bool skip_ctm = false; // Skip client CTM if user requested DRM_OR_IGNORE if (GetHwc()->GetResMan().GetCtmHandling() == CtmHandling::kDrmOrIgnore) skip_ctm = true; if (!skip_ctm) { *outNumCapabilities = 0; return HWC2::Error::None; } *outNumCapabilities = 1; if (outCapabilities) { outCapabilities[0] = HWC2_DISPLAY_CAPABILITY_SKIP_CLIENT_COLOR_TRANSFORM; } return HWC2::Error::None; } #endif /* __ANDROID_API__ > 28 */ #if __ANDROID_API__ > 27 HWC2::Error HwcDisplay::GetRenderIntents( int32_t mode, uint32_t *outNumIntents, int32_t * /*android_render_intent_v1_1_t*/ outIntents) { if (mode != HAL_COLOR_MODE_NATIVE) { return HWC2::Error::BadParameter; } if (outIntents == nullptr) { *outNumIntents = 1; return HWC2::Error::None; } *outNumIntents = 1; outIntents[0] = HAL_RENDER_INTENT_COLORIMETRIC; return HWC2::Error::None; } HWC2::Error HwcDisplay::SetColorModeWithIntent(int32_t mode, int32_t intent) { if (intent < HAL_RENDER_INTENT_COLORIMETRIC || intent > HAL_RENDER_INTENT_TONE_MAP_ENHANCE) return HWC2::Error::BadParameter; if (intent != HAL_RENDER_INTENT_COLORIMETRIC) return HWC2::Error::Unsupported; auto err = SetColorMode(mode); if (err != HWC2::Error::None) return err; return HWC2::Error::None; } #endif /* __ANDROID_API__ > 27 */ const Backend *HwcDisplay::backend() const { return backend_.get(); } void HwcDisplay::set_backend(std::unique_ptr backend) { backend_ = std::move(backend); } bool HwcDisplay::NeedsClientLayerUpdate() const { return std::any_of(layers_.begin(), layers_.end(), [](const auto &pair) { const auto &layer = pair.second; return layer.GetSfType() == HWC2::Composition::Client || layer.GetValidatedType() == HWC2::Composition::Client; }); } } // namespace android