# Copyright 2024 Arm Limited and/or its affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import numpy as np from executorch.backends.arm._passes.arm_pass_utils import ( create_node, get_first_fake_tensor, ) from executorch.backends.arm.tosa_quant_utils import dq_op, q_op from executorch.exir.dialects._ops import ops as exir_ops from executorch.exir.pass_base import ExportPass, PassResult class DecomposeLinearPass(ExportPass): """ This pass decomposes linear into a Conv2D with the required view operations. linear(x, weights, bias) becomes: x_reshaped = view(x) weights_reshaped = view(weights) conv2d = conv2d(x_reshaped, weights_reshaped, bias) output = view(conv2d) It also inserts q/dq pairs if the linear node was quantized. """ def call(self, graph_module): for node in graph_module.graph.nodes: if node.op != "call_function": continue if node.target != exir_ops.edge.aten.linear.default: continue args = node.args input = args[0] weights = args[1] bias = args[2] if len(args) > 2 else None output_shape = get_first_fake_tensor(node).shape input_shape = get_first_fake_tensor(input).shape weights_shape = get_first_fake_tensor(weights).shape batches = int(np.prod(input_shape[:-1])) if len(input_shape) > 1 else 1 # input has shape (..., Ci) input_reshaped_shape = [batches, input_shape[-1], 1, 1] # weights have shape (Co, Ci) weights_reshaped_shape = [weights_shape[0], weights_shape[1], 1, 1] with graph_module.graph.inserting_before(node): quantize = input.op == "call_function" and input.target == dq_op q_params = input.args[1:] if quantize else None # Reshape input to 4D with shape (N, Ci, 1, 1) input_reshaped = create_node( graph=graph_module.graph, op_target=exir_ops.edge.aten.view_copy.default, args=(input, input_reshaped_shape), kwargs={}, quantize=quantize, q_params=q_params, ) quantize = weights.op == "call_function" and weights.target == dq_op q_params = weights.args[1:] if quantize else None # Reshape weights to 4D with shape (Co, Ci, 1, 1) weights_reshaped = create_node( graph=graph_module.graph, op_target=exir_ops.edge.aten.view_copy.default, args=(weights, weights_reshaped_shape), kwargs={}, quantize=quantize, q_params=q_params, ) consumer_node = list(node.users)[0] quantize = ( consumer_node.op == "call_function" and consumer_node.target == q_op ) q_params = consumer_node.args[1:] if quantize else None conv = create_node( graph=graph_module.graph, op_target=exir_ops.edge.aten.convolution.default, args=( input_reshaped, weights_reshaped, bias, [1, 1], # strides [0, 0], # padding [1, 1], # dilation False, # transposed [0, 0], # output padding 1, # groups ), kwargs={}, quantize=quantize, q_params=q_params, ) with graph_module.graph.inserting_after(conv): # Reshape output to same rank as original input with shape (..., Co) # No need to insert q/dq pair as Conv2D node above has inserted them if # required. output = create_node( graph=graph_module.graph, op_target=exir_ops.edge.aten.view_copy.default, args=(conv, list(output_shape)), kwargs={}, ) node.replace_all_uses_with(output) graph_module.graph.erase_node(node) graph_module.graph.eliminate_dead_code() graph_module.recompile() graph_module = super().call(graph_module).graph_module return PassResult(graph_module, True)