# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import torch from executorch.backends.qualcomm.utils.constants import ( QCOM_QUANT_ATTRS, QCOM_QUANT_MAX, QCOM_SCALE, ) from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpBatchnorm, QNN_OP_PACKAGE_NAME_QTI_AISW from .utils import get_parameter @register_node_visitor class BatchNorm(NodeVisitor): target = ["aten._native_batch_norm_legit_no_training.default"] def __init__(self, *args) -> None: super().__init__(*args) def update_encoding(self, node: torch.fx.Node, tensor: torch.Tensor, eps): if isinstance(tensor, torch._subclasses.FakeTensor): return if quant_attrs := node.meta.get(QCOM_QUANT_ATTRS): # scale value equals to zero will cause failure in HTP diff = max(abs(tensor.max()), abs(tensor.min())) + eps quant_attrs[QCOM_SCALE] = diff / quant_attrs[QCOM_QUANT_MAX] def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) mean_node, var_node, eps = node.args[3], node.args[4], 1e-9 mean_tensor = get_parameter(mean_node, self.edge_program) var_tensor = get_parameter(var_node, self.edge_program) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) bias_node = node.args[2] bias_tensor = get_parameter(bias_node, self.edge_program) filter_node = node.args[1] filter_tensor = get_parameter(filter_node, self.edge_program) amount = (filter_tensor * mean_tensor) / torch.sqrt(var_tensor + eps) bias_tensor = bias_tensor - amount self.update_encoding(bias_node, bias_tensor, eps) bias_tensor_wrapper = self.define_tensor( bias_node, bias_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=False, ) filter_tensor = filter_tensor / torch.sqrt(var_tensor + eps) self.update_encoding(filter_node, filter_tensor, eps) filter_tensor_wrapper = self.define_tensor( filter_node, filter_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=False, ) batch_norm_input_tensors = [ input_tensor_wrapper, filter_tensor_wrapper, bias_tensor_wrapper, ] output_tensor = self.get_tensor(node, node, 0) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) batch_norm_output_tensors = [output_tensor_wrapper] batch_norm_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpBatchnorm.op_name, ) batch_norm_op.AddInputTensors(batch_norm_input_tensors) batch_norm_op.AddOutputTensors(batch_norm_output_tensors) return batch_norm_op