# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpGroupNorm, QNN_OP_PACKAGE_NAME_QTI_AISW from .utils import get_parameter @register_node_visitor class GroupNormVisitor(NodeVisitor): target = ["aten.native_group_norm.default"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) weight_node = node.args[1] weight_tensor = get_parameter(weight_node, self.edge_program) weight_tensor_wrapper = self.define_tensor( weight_node, weight_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=False, ) bias_node = node.args[2] bias_tensor = get_parameter(bias_node, self.edge_program) bias_tensor_wrapper = self.define_tensor( bias_node, bias_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_STATIC, nodes_to_wrappers, is_input_tensor=False, ) group = node.args[6] epsilon = node.args[7] output_tensor = self.get_tensor(node, node, 0) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) group_norm_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpGroupNorm.op_name, ) group_norm_op.AddInputTensors( [input_tensor_wrapper, weight_tensor_wrapper, bias_tensor_wrapper] ) group_norm_op.AddOutputTensors([output_tensor_wrapper]) group_norm_op.AddScalarParam( OpGroupNorm.param_epsilon, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_FLOAT_32, {"data": np.float32(epsilon)}, ) group_norm_op.AddScalarParam( OpGroupNorm.param_group, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {"data": np.uint32(group)}, ) return group_norm_op