# Copyright (c) Qualcomm Innovation Center, Inc. # All rights reserved # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import math from typing import cast, Dict import executorch.backends.qualcomm.python.PyQnnWrapperAdaptor as PyQnnWrapper import numpy as np import torch from executorch.backends.qualcomm.utils.constants import QCOM_DATA from .node_visitor import NodeVisitor, register_node_visitor from .qnn_constants import OpStridedSlice, QNN_OP_PACKAGE_NAME_QTI_AISW @register_node_visitor class SelectCopy(NodeVisitor): target = ["aten.select_copy.int", "aten.select.int"] def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, nodes_to_wrappers: Dict[torch.fx.Node, PyQnnWrapper.TensorWrapper], ) -> PyQnnWrapper.PyQnnOpWrapper: input_node = node.args[0] input_tensor = self.get_tensor(input_node, node) input_tensor_wrapper = self.define_tensor( input_node, input_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=True, ) output_tensor = self.get_tensor(node, node) output_tensor_wrapper = self.define_tensor( node, output_tensor, PyQnnWrapper.Qnn_TensorType_t.QNN_TENSOR_TYPE_NATIVE, nodes_to_wrappers, is_input_tensor=False, ) dim = cast(int, node.args[1]) if dim < 0: dim = dim % len(input_tensor.shape) index = cast(int, node.args[2]) % input_tensor.shape[dim] input_tensor_rank = len(input_tensor.shape) ranges = [] for i in range(input_tensor_rank): if i == dim: ranges.extend([index, index, 1]) else: ranges.extend([0, input_tensor.shape[i], 1]) range_shape = [input_tensor_rank, 3] stride_slice_op = PyQnnWrapper.PyQnnOpWrapper( node.name, QNN_OP_PACKAGE_NAME_QTI_AISW, OpStridedSlice.op_name, ) stride_slice_op.AddInputTensors([input_tensor_wrapper]) stride_slice_op.AddOutputTensors([output_tensor_wrapper]) stride_slice_op.AddTensorParam( OpStridedSlice.param_ranges, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_INT_32, len(range_shape), range_shape, np.array(ranges, dtype=np.int32), True, ) stride_slice_op.AddScalarParam( OpStridedSlice.param_shrink_axes, PyQnnWrapper.Qnn_DataType_t.QNN_DATATYPE_UINT_32, {QCOM_DATA: np.uint32(math.pow(2, dim))}, ) return stride_slice_op