/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #pragma once #include "app.h" #include "stats.h" #include "utils.h" namespace gpuinfo { // Textures are drastically different from buffers in terms of data layout. // While buffers are a contiguous range of memory, textures are opaque objects // defined by the vendor and it is possible that nearby points of data are not // neighboring in memory. Likewise, data points are accessed in // multi-dimensional patches instead of simple lines. This makes the stride // method for figuring out the cache line size not applicable. To go around // this, this experiment runs an increasing amount of threads accessing // different datapoints in the texture and measures latency. If the cache line // is big enough to contain all requested data for the amount of threads, // latency will be low. When there are more threads and hence more data than // what a single cache line can handle, a second line must be fetched, // increasing latency in a measurable way. void tex_cacheline_concurr(const App& app) { if (!app.enabled("tex_cacheline_concurr")) { std::cout << "Skipped Texture Cacheline Optimal Concurrency" << std::endl; return; } const uint32_t TEXEL_WIDTH = 4; const uint32_t TEXEL_SIZE = sizeof(float) * TEXEL_WIDTH; const double COMPENSATE = app.get_config("tex_cacheline_concurr", "compensate"); const double THRESHOLD = app.get_config("tex_cacheline_concurr", "threshold"); for (int dim = 0; dim < 3; ++dim) { std::cout << std::endl; std::cout << "------ Texture Cacheline Optimal Concurrency (dim = " << dim << ") ------" << std::endl; uint32_t NITER; const uint32_t IMG_OTHER_EDGE = dim == 0 ? app.max_tex_width : dim == 1 ? app.max_tex_height : app.max_tex_depth; const uint32_t MAX_NTHREAD = std::min(app.nthread_logic, IMG_OTHER_EDGE); auto bench = [&](uint32_t nthread) { std::vector sizes_whd = { app.max_tex_width, app.max_tex_height, app.max_tex_depth}; auto sizes_nchw = whd_to_nchw(sizes_whd); vTensor in_tensor = api::vTensor(api::context(), sizes_nchw, vkapi::kFloat); StagingBuffer out_buf(context(), vkapi::kFloat, TEXEL_WIDTH); vkapi::PipelineBarrier pipeline_barrier{}; auto shader_name = "tex_cacheline_concurr_" + std::to_string(dim); auto time = benchmark_on_gpu(shader_name, 100, [&]() { context()->submit_compute_job( VK_KERNEL_FROM_STR(shader_name), pipeline_barrier, {nthread, 1, 1}, {nthread, 1, 1}, {SV(NITER)}, VK_NULL_HANDLE, 0, in_tensor.image(), out_buf.buffer()); }); return time; }; ensure_min_niter(1000, NITER, [&]() { return bench(1); }); DtJumpFinder<5> dj(COMPENSATE, THRESHOLD); uint32_t nthread = 1; for (; nthread <= MAX_NTHREAD; ++nthread) { double time = bench(nthread); std::cout << "Testing nthread=\t" << nthread << "\t, time=\t" << time << std::endl; if (dj.push(time)) { auto max_concurrency = nthread - 1; std::cout << "TextureCachelineConcurrencyDim" << dim << " (B)," << max_concurrency * TEXEL_SIZE << std::endl; break; } } if (nthread >= MAX_NTHREAD) { std::cout << "Unable to conclude an optimal texture cacheline concurrency for dim " << dim << std::endl; }; } // TODO: Use concurrency information to obtain the cache line size for // textures as done in https://fburl.com/98xiou3g } void tex_bandwidth(const App& app) { if (!app.enabled("tex_bandwidth")) { std::cout << "Skipped Texture Bandwidth" << std::endl; return; } for (int dim = 0; dim < 3; dim++) { std::cout << "\n------ Texture Bandwidth (Dim = " << dim << ") ------" << std::endl; const uint32_t MAX_SIZE = dim == 0 ? app.max_tex_width : dim == 1 ? app.max_tex_height : app.max_tex_depth; // rgba, float const uint32_t VEC_WIDTH = 4; const uint32_t VEC_SIZE = VEC_WIDTH * sizeof(float); const uint32_t NVEC = MAX_SIZE; const uint32_t RANGE = NVEC * VEC_SIZE; // Cache lines flushed const uint32_t NFLUSH = app.get_config("tex_bandwidth", "nflush"); // Number of loop unrolls. Changing this value requires an equal change in // tex_bandwidth.yaml const uint32_t NUNROLL = app.get_config("tex_bandwidth", "nunroll"); // Number of iterations. Increasing this value reduces noise in exchange // for higher latency. const uint32_t NITER = app.get_config("tex_bandwidth", "niter"); // Number of memory reads per thread const uint32_t NREAD_PER_THREAD = NUNROLL * NITER; // Number of threads needed to read all texells const uint32_t NTHREAD = NVEC; // Occupy all threads const uint32_t local_x = app.nthread_logic; // Ensure that global is a multiple of local, and distribute across all // SMs const uint32_t global_x = (NTHREAD / local_x * local_x) * app.sm_count * NFLUSH; auto shader_name = "tex_bandwidth_" + std::to_string(dim); std::vector sizes_whd = {MAX_SIZE, 1, 1}; if (dim == 1) { sizes_whd = {1, MAX_SIZE, 1}; } else if (dim == 2) { sizes_whd = {1, 1, MAX_SIZE}; } auto sizes_nchw = whd_to_nchw(sizes_whd); vTensor in_tensor = api::vTensor(api::context(), sizes_nchw, vkapi::kFloat); auto bench = [&](uint32_t access_size, uint32_t dim) { // Number of texels that fit in this iteration const uint32_t ntexel_access = access_size / VEC_SIZE; // The address mask works as a modulo because x % 2^n == x & (2^n - 1). // This will help us limit address accessing to a specific set of unique // addresses depending on the access size we want to measure. const uint32_t addr_mask = ntexel_access - 1; // This is to distribute the accesses to unique addresses across the // workgroups, once the size of the access excedes the workgroup width. const uint32_t workgroup_width = local_x * NITER * NUNROLL; StagingBuffer out_buf( context(), vkapi::kFloat, VEC_WIDTH * app.nthread_logic); vkapi::PipelineBarrier pipeline_barrier{}; auto time = benchmark_on_gpu(shader_name, 10, [&]() { context()->submit_compute_job( VK_KERNEL_FROM_STR(shader_name), pipeline_barrier, {global_x, 1, 1}, {local_x, 1, 1}, {SV(NITER), SV(ntexel_access), SV(local_x), SV(addr_mask), SV(workgroup_width)}, VK_NULL_HANDLE, 0, in_tensor.image(), out_buf.buffer()); }); const uint32_t SIZE_TRANS = global_x * NREAD_PER_THREAD * VEC_SIZE; double gbps = SIZE_TRANS * 1e-3 / time; std::cout << "Texture bandwidth accessing \t" << access_size << "\tB unique data is \t" << gbps << " \tgbps (\t" << time << "\tus)" << std::endl; return gbps; }; double max_bandwidth = 0; double min_bandwidth = DBL_MAX; for (uint32_t access_size = VEC_SIZE; access_size < RANGE; access_size *= 2) { double gbps = bench(access_size, dim); max_bandwidth = std::max(gbps, max_bandwidth); min_bandwidth = std::min(gbps, min_bandwidth); } std::cout << "MaxTextureBandwidthDim" << dim << "(GB/s)," << max_bandwidth << std::endl; std::cout << "MinTextureBandwidthDim" << dim << "(GB/s)," << min_bandwidth << std::endl; } } } // namespace gpuinfo