# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. from typing import Dict import torch from executorch.backends.xnnpack.operators.node_visitor import ( NodeVisitor, register_node_visitor, ) from executorch.backends.xnnpack.serialization.xnnpack_graph_schema import ( XNNFullyConnected, XNNGraph, XNode, ) from executorch.backends.xnnpack.utils.utils import get_input_node from executorch.backends.xnnpack.utils.xnnpack_constants import ( XNN_FLAG_TRANSPOSE_WEIGHTS, XNN_INVALID_VALUE_ID, ) @register_node_visitor class MatrixMultiplyVisitor(NodeVisitor): target = "aten.mm.default" def __init__(self, *args) -> None: super().__init__(*args) def define_node( self, node: torch.fx.Node, xnn_graph: XNNGraph, vals_to_ids: Dict[torch.fx.Node, int], debug_handle: int, ) -> None: self.define_nodes_tensor_inputs_outputs(node, xnn_graph, vals_to_ids) # input input_id = vals_to_ids[get_input_node(node, 0)] # filter filter_id = vals_to_ids[get_input_node(node, 1)] # output output = vals_to_ids[node] # Matrix Multiply is handled by using linear with bias = 0. XNNPACK performs # this by giving a dummy id as the bias in the fully-connected node. ser_node = XNode( xnode_union=XNNFullyConnected( input1_id=input_id, filter_id=filter_id, bias_id=XNN_INVALID_VALUE_ID, # Dummy Bias id for bias = 0 output_id=output, # We are taking from Aten::mm which holds weights as (in, out) # instead of (out, in) which is what torch.nn.linear uses flags=XNN_FLAG_TRANSPOSE_WEIGHTS, ), debug_handle=debug_handle, ) xnn_graph.xnodes.append(ser_node)