/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #include // Declares the operator #include #include #include #include #include #include #include using namespace ::testing; using exec_aten::Scalar; using exec_aten::ScalarType; using exec_aten::Tensor; using torch::executor::testing::TensorFactory; class OpScatterAddOutTest : public OperatorTest { protected: Tensor& op_scatter_add_out( const Tensor& self, int64_t dim, const Tensor& index, const Tensor& src, Tensor& out) { return torch::executor::aten::scatter_add_outf( context_, self, dim, index, src, out); } // Common testing for the operator template void test_scatter_add_out() { TensorFactory tf_index; TensorFactory tf_data; const std::vector sizes = {3, 5}; // clang-format off Tensor src = tf_data.make( /*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); // clang-format on Tensor self = tf_data.zeros(sizes); Tensor out = tf_data.zeros(sizes); // clang-format off Tensor index = tf_index.make( /*sizes=*/{2, 3}, { 0, 1, 2, 0, 1, 2 }); // clang-format on // Valid input should give the expected output op_scatter_add_out(self, 0, index, src, out); // clang-format off EXPECT_TENSOR_EQ( out, tf_data.make( sizes, { 7, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 11, 0, 0 })); // clang-format on // Valid input should give the expected output op_scatter_add_out(self, 1, index, src, out); // clang-format off EXPECT_TENSOR_EQ( out, tf_data.make(sizes, { 1, 2, 3, 0, 0, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0 })); src = tf_data.make( /*sizes=*/{2, 3, 3}, { // [0, :, :] 1, 2, 3, 4, 5, 6, 7, 8, 9, // [1, :, :] 10, 11, 12, 13, 14, 15, 16, 17, 18 }); // clang-format on self = tf_data.ones(/*sizes=*/{2, 3, 3}); out = tf_data.zeros(/*sizes=*/{2, 3, 3}); // clang-format off index = tf_index.make( /*sizes=*/{1, 3, 2}, { 0, 1, 1, 2, 0, 2 }); // clang-format on op_scatter_add_out(self, 1, index, src, out); // clang-format off EXPECT_TENSOR_EQ( out, tf_data.make( /*sizes=*/{2, 3, 3}, { // [0, :, :] 9, 1, 1, 5, 3, 1, 1, 14, 1, // [1, :, :] 1, 1, 1, 1, 1, 1, 1, 1, 1 })); // clang-format on out = tf_data.zeros(/*sizes=*/{2, 3, 3}); op_scatter_add_out(self, 2, index, src, out); // clang-format off EXPECT_TENSOR_EQ( out, tf_data.make( /*sizes=*/{2, 3, 3}, { // [0, :, :] 2, 3, 1, 1, 5, 6, 8, 1, 9, // [1, :, :] 1, 1, 1, 1, 1, 1, 1, 1, 1 })); // clang-format on } // Invalid dimensions template void test_scatter_add_out_invalid_dim() { TensorFactory tf_index; TensorFactory tf_data; const std::vector sizes = {3, 5}; // clang-format off Tensor src = tf_data.make(/*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); Tensor index = tf_index.make(/*sizes=*/{2, 3}, { 0, 1, 2, 0, 1, 2 }); // clang-format on Tensor self = tf_data.zeros(sizes); Tensor out = tf_data.zeros(sizes); // Invalid dim should die ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, -3, index, src, out)); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 2, index, src, out)); // Self, index and src hsould have same number of dimensions src = tf_data.zeros(/*sizes=*/{2, 2, 2}); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); src = tf_data.zeros(/*sizes=*/{5, 5}); index = tf_index.zeros(/*sizes=*/{2, 2, 2}); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); // Size of dimension of index should be smaller than the size of that // dimension of src index = tf_index.zeros(/*sizes=*/{4, 6}); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); // Size of dimension of index should be smaller than the size of that // dimension of self if dimension != dim index = tf_index.zeros(/*sizes=*/{4, 5}); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 1, index, src, out)); // Index out of bound for self in dim index = tf_index.make(/*sizes=*/{2, 3}, {0, 1, 3, 0, 1, 3}); ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); } // Mismatched shape template void test_scatter_add_out_mismatched_shape() { TensorFactory tf_index; TensorFactory tf_data; // clang-format off Tensor src = tf_data.make(/*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); Tensor index = tf_index.make(/*sizes=*/{2, 3}, { 0, 1, 2, 0, 1, 2 }); // clang-format on Tensor self = tf_data.zeros(/*sizes=*/{3, 5}); Tensor out = tf_data.zeros(/*sizes=*/{2, 5}); // self and out should be of the same shape ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); } /* %python import torch torch.manual_seed(0) input_shape = (2, 3, 4) input = torch.randint(10, input_shape) dim = 2 index = torch.randint(input.size(dim), input_shape) src = torch.randint(10, input_shape) expected = torch.scatter_add(input, dim, index, src) scatter_add_template = f""" {declare_tensor_factory("ScalarType::Int", "tf")} {declare_tensor_factory("ScalarType::Long", "tf_index")} {declare_tensor_make_t("input", "tf")} {declare_tensor_make_t("index", "tf_index")} {declare_tensor_make_t("src", "tf")} {declare_tensor_make_t("expected", "tf")} {declare_tensor_zeros("out_shape, dynamism", "tf", "out")} op_scatter_add_out(input, $dim$, index, src, out); EXPECT_TENSOR_EQ(out, expected);""" */ void test_dynamic_shape( const std::vector& out_shape, enum torch::executor::TensorShapeDynamism dynamism) { /* %python %rewrite(scatter_add_template) */ TensorFactory tf; TensorFactory tf_index; Tensor input = tf.make({2, 3, 4}, {4, 9, 3, 0, 3, 9, 7, 3, 7, 3, 1, 6, 6, 9, 8, 6, 6, 8, 4, 3, 6, 9, 1, 4}); Tensor index = tf_index.make({2, 3, 4}, {0, 1, 1, 1, 1, 0, 1, 0, 3, 0, 3, 1, 2, 3, 3, 0, 2, 3, 0, 1, 3, 1, 3, 3}); Tensor src = tf.make({2, 3, 4}, {2, 1, 0, 9, 3, 1, 1, 0, 3, 6, 6, 7, 9, 6, 3, 4, 5, 0, 8, 2, 8, 2, 7, 5}); Tensor expected = tf.make({2, 3, 4}, {6, 19, 3, 0, 4, 13, 7, 3, 13, 10, 1, 15, 10, 9, 17, 15, 14, 10, 9, 3, 6, 11, 1, 24}); Tensor out = tf.zeros(out_shape, dynamism); op_scatter_add_out(input, 2, index, src, out); EXPECT_TENSOR_EQ(out, expected); } }; TEST_F(OpScatterAddOutTest, AllValidInputOutputSupport) { #define TEST_ENTRY(CTYPE, DTYPE) test_scatter_add_out(); ET_FORALL_REAL_TYPES(TEST_ENTRY); #undef TEST_ENTRY } TEST_F(OpScatterAddOutTest, InfinityAndNANTest) { TensorFactory tf_index; TensorFactory tf_data; const std::vector sizes = {3, 5}; // clang-format off Tensor src = tf_data.make( /*sizes=*/{2, 5}, { INFINITY, -INFINITY, NAN, 2.33, 3.14, NAN, INFINITY, -INFINITY, 3.14, 2.33 }); // clang-format on Tensor self = tf_data.ones(sizes); Tensor out = tf_data.zeros(sizes); Tensor index = tf_index.make(/*sizes=*/{2, 3}, {0, 1, 2, 0, 1, 2}); // Valid input should give the expected output op_scatter_add_out(self, 0, index, src, out); // clang-format off EXPECT_TENSOR_CLOSE( out, tf_data.make(sizes, { NAN, 1, 1, 1, 1, 1, NAN, 1, 1, 1, 1, 1, NAN, 1, 1 })); // clang-format on } TEST_F(OpScatterAddOutTest, InvalidDimensionsDies) { #define TEST_ENTRY(CTYPE, DTYPE) \ test_scatter_add_out_invalid_dim(); ET_FORALL_REAL_TYPES(TEST_ENTRY); #undef TEST_ENTRY } TEST_F(OpScatterAddOutTest, MismatchedShapeDies) { if (torch::executor::testing::SupportedFeatures::get()->is_aten) { GTEST_SKIP() << "ATen kernel can handle mismatched shape"; } #define TEST_ENTRY(CTYPE, DTYPE) \ test_scatter_add_out_mismatched_shape(); ET_FORALL_REAL_TYPES(TEST_ENTRY); #undef TEST_ENTRY } TEST_F(OpScatterAddOutTest, MismatchedInputDtypesDies) { TensorFactory tf_byte; TensorFactory tf_char; TensorFactory tf_long; const std::vector sizes = {3, 5}; // clang-format off Tensor src = tf_char.make(/*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); Tensor index = tf_byte.make(/*sizes=*/{2, 3}, { 0, 1, 2, 0, 1, 2 }); // clang-format on Tensor self = tf_char.zeros(sizes); Tensor out = tf_char.zeros(sizes); // Types other than long for index should die ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); // Mismatched dtype of src and self should die // clang-format off src = tf_char.make(/*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); // clang-format on ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); // clang-format off src = tf_byte.make(/*sizes=*/{2, 5}, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); // clang-format on self = tf_byte.zeros(sizes); out = tf_char.zeros(sizes); // Mismatched dtype of self and out should die ET_EXPECT_KERNEL_FAILURE( context_, op_scatter_add_out(self, 0, index, src, out)); } TEST_F(OpScatterAddOutTest, DynamicShapeUpperBoundSameAsExpected) { test_dynamic_shape( {2, 3, 4}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); } TEST_F(OpScatterAddOutTest, DynamicShapeUpperBoundLargerThanExpected) { if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { GTEST_SKIP() << "Dynamic shape not supported"; } test_dynamic_shape( {10, 10, 10}, torch::executor::TensorShapeDynamism::DYNAMIC_BOUND); } TEST_F(OpScatterAddOutTest, DynamicShapeUnbound) { if (!torch::executor::testing::SupportedFeatures::get()->output_resize) { GTEST_SKIP() << "Dynamic shape not supported"; } test_dynamic_shape( {1, 1, 1}, torch::executor::TensorShapeDynamism::DYNAMIC_UNBOUND); }