/* * Copyright (c) 2024, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "config/aom_config.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/aom_filter.h" #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "aom_ports/mem.h" #include "av1/common/arm/convolve_scale_neon.h" #include "av1/common/convolve.h" #include "av1/common/enums.h" #include "av1/common/filter.h" // clang-format off DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 }; // clang-format on static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1, const uint8x8_t s2, const uint8x8_t s3, const int8x8_t filter, const int32x4_t horiz_const) { const int8x16_t filters = vcombine_s8(filter, filter); uint8x16_t s01 = vcombine_u8(s0, s1); uint8x16_t s23 = vcombine_u8(s2, s3); // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); int32x4_t sum = vpaddq_s32(sum01, sum23); // We halved the filter values so -1 from right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1, const uint8x8_t s2, const uint8x8_t s3, const uint8x8_t s4, const uint8x8_t s5, const uint8x8_t s6, const uint8x8_t s7, const int8x8_t filter, const int32x4_t horiz_const) { const int8x16_t filters = vcombine_s8(filter, filter); uint8x16_t s01 = vcombine_u8(s0, s1); uint8x16_t s23 = vcombine_u8(s2, s3); uint8x16_t s45 = vcombine_u8(s4, s5); uint8x16_t s67 = vcombine_u8(s6, s7); // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128))); int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128))); int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); int32x4_t sum45 = vdotq_s32(horiz_const, s45_128, filters); int32x4_t sum67 = vdotq_s32(horiz_const, s67_128, filters); int32x4_t sum0123 = vpaddq_s32(sum01, sum23); int32x4_t sum4567 = vpaddq_s32(sum45, sum67); // We halved the filter values so -1 from right shift. return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), vshrn_n_s32(sum4567, ROUND0_BITS - 1)); } static inline void convolve_horiz_scale_neon_dotprod( const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter, const int subpel_x_qn, const int x_step_qn) { DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); const int bd = 8; // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. const int32_t horiz_offset = (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 // from every source value. const int32_t dotprod_offset = 128 << FILTER_BITS; // Divide the total by 4: we halved the filter values and will use a pairwise // add in the convolution kernel. const int32x4_t horiz_offset_vec = vdupq_n_s32((horiz_offset + dotprod_offset) >> 2); if (w == 4) { do { int x_qn = subpel_x_qn; // Process a 4x4 tile. for (int r = 0; r < 4; r++) { const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); // Filter values are all even so halve them to fit in int8_t. const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); uint8x8_t t0, t1, t2, t3; load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset_vec); vst1_s16(&temp[r * 4], d0); x_qn += x_step_qn; } // Transpose the 4x4 result tile and store. int16x4_t d0, d1, d2, d3; load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { do { int x_qn = subpel_x_qn; int16_t *d = dst; int width = w; do { // Process an 8x8 tile. for (int r = 0; r < 8; r++) { const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; const ptrdiff_t filter_offset = SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); // Filter values are all even so halve them to fit in int8_t. int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter, horiz_offset_vec); vst1q_s16(&temp[r * 8], d0); x_qn += x_step_qn; } // Transpose the 8x8 result tile and store. int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); d += 8; width -= 8; } while (width != 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } } static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples, const int8x8_t filters, const int32x4_t horiz_const, const uint8x16x2_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples_128 = vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 } // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; int32x4_t sum = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); // We halved the filter values so -1 from right shift. return vshrn_n_s32(sum, ROUND0_BITS - 1); } static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2], const int8x8_t filters, const int32x4_t horiz_const, const uint8x16x2_t permute_tbl) { // Transform sample range to [-128, 127] for 8-bit signed dot product. int8x16_t samples0_128 = vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128))); int8x16_t samples1_128 = vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128))); // Permute samples ready for dot product. // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9 } // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } int8x16_t perm_samples[4] = { vqtbl1q_s8(samples0_128, permute_tbl.val[0]), vqtbl1q_s8(samples0_128, permute_tbl.val[1]), vqtbl1q_s8(samples1_128, permute_tbl.val[0]), vqtbl1q_s8(samples1_128, permute_tbl.val[1]) }; // First 4 output values. int32x4_t sum0123 = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1); // Second 4 output values. int32x4_t sum4567 = vdotq_lane_s32(horiz_const, perm_samples[2], filters, 0); sum4567 = vdotq_lane_s32(sum4567, perm_samples[3], filters, 1); // We halved the filter values so -1 from right shift. return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), vshrn_n_s32(sum4567, ROUND0_BITS - 1)); } static inline void convolve_horiz_scale_2_neon_dotprod( const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, int h, const int16_t *x_filter) { const int bd = 8; // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. const int32_t horiz_offset = (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 // from every source value. const int32_t dotprod_offset = 128 << FILTER_BITS; // Divide the total by 2 because we halved the filter values. const int32x4_t horiz_offset_vec = vdupq_n_s32((horiz_offset + dotprod_offset) >> 1); const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl); // Filter values are all even so halve them to fit in int8_t. const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1); if (w == 4) { do { const uint8_t *s = src; int16_t *d = dst; int width = w; do { uint8x16_t s0, s1, s2, s3; load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); int16x4_t d0 = convolve8_4_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); int16x4_t d1 = convolve8_4_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); int16x4_t d2 = convolve8_4_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); int16x4_t d3 = convolve8_4_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); store_s16_4x4(d, dst_stride, d0, d1, d2, d3); s += 8; d += 4; width -= 4; } while (width != 0); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } else { do { const uint8_t *s = src; int16_t *d = dst; int width = w; do { uint8x16_t s0[2], s1[2], s2[2], s3[2]; load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); int16x8_t d0 = convolve8_8_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); int16x8_t d1 = convolve8_8_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); int16x8_t d2 = convolve8_8_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); int16x8_t d3 = convolve8_8_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); store_s16_8x4(d, dst_stride, d0, d1, d2, d3); s += 16; d += 8; width -= 8; } while (width != 0); dst += 4 * dst_stride; src += 4 * src_stride; h -= 4; } while (h > 0); } } void av1_convolve_2d_scale_neon_dotprod( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h, const InterpFilterParams *filter_params_x, const InterpFilterParams *filter_params_y, const int subpel_x_qn, const int x_step_qn, const int subpel_y_qn, const int y_step_qn, ConvolveParams *conv_params) { if (w < 4 || h < 4) { av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, filter_params_y, subpel_x_qn, x_step_qn, subpel_y_qn, y_step_qn, conv_params); return; } // For the interpolation 8-tap filters are used. assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); DECLARE_ALIGNED(32, int16_t, im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + filter_params_y->taps; int im_stride = MAX_SB_SIZE; CONV_BUF_TYPE *dst16 = conv_params->dst; const int dst16_stride = conv_params->dst_stride; // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 // lines post both horizontally and vertically. const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; // Horizontal filter if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { convolve_horiz_scale_neon_dotprod( src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); } else { assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); // The filter index is calculated using the // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS // equation, where the values of x are from 0 to w. If x_step_qn is a // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. const ptrdiff_t filter_offset = SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >> // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0, // the source index can be determined using the value x * (x_step_qn / // (1 << SCALE_SUBPEL_BITS)). convolve_horiz_scale_2_neon_dotprod(src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, im_h, x_filter); } // Vertical filter if (filter_params_y->interp_filter == MULTITAP_SHARP) { if (UNLIKELY(conv_params->is_compound)) { if (conv_params->do_average) { if (conv_params->use_dist_wtd_comp_avg) { compound_dist_wtd_convolve_vert_scale_8tap_neon( im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); } else { compound_avg_convolve_vert_scale_8tap_neon( im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { compound_convolve_vert_scale_8tap_neon( im_block, im_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { if (UNLIKELY(conv_params->is_compound)) { if (conv_params->do_average) { if (conv_params->use_dist_wtd_comp_avg) { compound_dist_wtd_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); } else { compound_avg_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { compound_convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst16, dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } else { convolve_vert_scale_6tap_neon( im_block + im_stride, im_stride, dst, dst_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); } } }