/* * * Copyright (c) 2020, Alliance for Open Media. All rights reserved. * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/arm/mem_neon.h" #include "aom_dsp/arm/transpose_neon.h" #include "av1/common/arm/resize_neon.h" #include "av1/common/resize.h" #include "config/aom_scale_rtcd.h" #include "config/av1_rtcd.h" static inline void scale_plane_2_to_1_phase_0(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, int w, int h) { assert(w > 0 && h > 0); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { const uint8x16x2_t s0 = vld2q_u8(s); vst1q_u8(d, s0.val[0]); s += 32; d += 16; width -= 16; } while (width > 0); src += 2 * src_stride; dst += dst_stride; } while (--h != 0); } static inline void scale_plane_4_to_1_phase_0(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, int w, int h) { assert(w > 0 && h > 0); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { const uint8x16x4_t s0 = vld4q_u8(s); vst1q_u8(d, s0.val[0]); s += 64; d += 16; width -= 16; } while (width > 0); src += 4 * src_stride; dst += dst_stride; } while (--h != 0); } static inline uint8x16_t scale_plane_bilinear_kernel( const uint8x16_t s0_even, const uint8x16_t s0_odd, const uint8x16_t s1_even, const uint8x16_t s1_odd, const uint8x8_t filter0, const uint8x8_t filter1) { // A shim of 1 << (FILTER_BITS - 1) enables us to use non-rounding // shifts - which are generally faster than rounding shifts on modern CPUs. uint16x8_t offset = vdupq_n_u16(1 << (FILTER_BITS - 1)); // Horizontal filtering uint16x8_t h0_lo = vmlal_u8(offset, vget_low_u8(s0_even), filter0); uint16x8_t h0_hi = vmlal_u8(offset, vget_high_u8(s0_even), filter0); uint16x8_t h1_lo = vmlal_u8(offset, vget_low_u8(s1_even), filter0); uint16x8_t h1_hi = vmlal_u8(offset, vget_high_u8(s1_even), filter0); h0_lo = vmlal_u8(h0_lo, vget_low_u8(s0_odd), filter1); h0_hi = vmlal_u8(h0_hi, vget_high_u8(s0_odd), filter1); h1_lo = vmlal_u8(h1_lo, vget_low_u8(s1_odd), filter1); h1_hi = vmlal_u8(h1_hi, vget_high_u8(s1_odd), filter1); const uint8x8_t h0_lo_u8 = vshrn_n_u16(h0_lo, FILTER_BITS); const uint8x8_t h0_hi_u8 = vshrn_n_u16(h0_hi, FILTER_BITS); const uint8x8_t h1_lo_u8 = vshrn_n_u16(h1_lo, FILTER_BITS); const uint8x8_t h1_hi_u8 = vshrn_n_u16(h1_hi, FILTER_BITS); // Vertical filtering uint16x8_t v_lo = vmlal_u8(offset, h0_lo_u8, filter0); uint16x8_t v_hi = vmlal_u8(offset, h0_hi_u8, filter0); v_lo = vmlal_u8(v_lo, h1_lo_u8, filter1); v_hi = vmlal_u8(v_hi, h1_hi_u8, filter1); return vcombine_u8(vshrn_n_u16(v_lo, FILTER_BITS), vshrn_n_u16(v_hi, FILTER_BITS)); } static inline void scale_plane_2_to_1_bilinear( const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, int w, int h, const int16_t f0, const int16_t f1) { assert(w > 0 && h > 0); const uint8x8_t filter0 = vdup_n_u8(f0); const uint8x8_t filter1 = vdup_n_u8(f1); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { const uint8x16x2_t s0 = vld2q_u8(s + 0 * src_stride); const uint8x16x2_t s1 = vld2q_u8(s + 1 * src_stride); uint8x16_t d0 = scale_plane_bilinear_kernel( s0.val[0], s0.val[1], s1.val[0], s1.val[1], filter0, filter1); vst1q_u8(d, d0); s += 32; d += 16; width -= 16; } while (width > 0); src += 2 * src_stride; dst += dst_stride; } while (--h != 0); } static inline void scale_plane_4_to_1_bilinear( const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, int w, int h, const int16_t f0, const int16_t f1) { assert(w > 0 && h > 0); const uint8x8_t filter0 = vdup_n_u8(f0); const uint8x8_t filter1 = vdup_n_u8(f1); do { const uint8_t *s = src; uint8_t *d = dst; int width = w; do { const uint8x16x4_t s0 = vld4q_u8(s + 0 * src_stride); const uint8x16x4_t s1 = vld4q_u8(s + 1 * src_stride); uint8x16_t d0 = scale_plane_bilinear_kernel( s0.val[0], s0.val[1], s1.val[0], s1.val[1], filter0, filter1); vst1q_u8(d, d0); s += 64; d += 16; width -= 16; } while (width > 0); src += 4 * src_stride; dst += dst_stride; } while (--h != 0); } static inline void scale_2_to_1_horiz_6tap(const uint8_t *src, const int src_stride, int w, int h, uint8_t *dst, const int dst_stride, const int16x8_t filters) { do { uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); const uint8_t *s = src + 6; uint8_t *d = dst; int width = w; do { uint8x8_t t8, t9, t10, t11, t12, t13; load_u8_8x8(s, src_stride, &t6, &t7, &t8, &t9, &t10, &t11, &t12, &t13); transpose_elems_inplace_u8_8x8(&t6, &t7, &t8, &t9, &t10, &t11, &t12, &t13); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8)); int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9)); int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10)); int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11)); int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t12)); int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t13)); uint8x8_t d0 = scale_filter6_8(s0, s1, s2, s3, s4, s5, filters); uint8x8_t d1 = scale_filter6_8(s2, s3, s4, s5, s6, s7, filters); uint8x8_t d2 = scale_filter6_8(s4, s5, s6, s7, s8, s9, filters); uint8x8_t d3 = scale_filter6_8(s6, s7, s8, s9, s10, s11, filters); transpose_elems_inplace_u8_8x4(&d0, &d1, &d2, &d3); store_u8x4_strided_x2(d + 0 * dst_stride, 4 * dst_stride, d0); store_u8x4_strided_x2(d + 1 * dst_stride, 4 * dst_stride, d1); store_u8x4_strided_x2(d + 2 * dst_stride, 4 * dst_stride, d2); store_u8x4_strided_x2(d + 3 * dst_stride, 4 * dst_stride, d3); s0 = s8; s1 = s9; s2 = s10; s3 = s11; s4 = s12; s5 = s13; d += 4; s += 8; width -= 4; } while (width > 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } static inline void scale_plane_2_to_1_6tap(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const filter_ptr, uint8_t *const im_block) { assert(w > 0 && h > 0); const int im_h = 2 * h + SUBPEL_TAPS - 3; const int im_stride = (w + 3) & ~3; // All filter values are even, halve them to stay in 16-bit elements when // applying filter. const int16x8_t filters = vshrq_n_s16(vld1q_s16(filter_ptr), 1); const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 2; const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 2) * src_stride; scale_2_to_1_horiz_6tap(src - horiz_offset - vert_offset, src_stride, w, im_h, im_block, im_stride, filters); scale_2_to_1_vert_6tap(im_block, im_stride, w, h, dst, dst_stride, filters); } static inline void scale_4_to_1_horiz_6tap(const uint8_t *src, const int src_stride, int w, int h, uint8_t *dst, const int dst_stride, const int16x8_t filters) { do { uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); transpose_elems_u8_4x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3); int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); const uint8_t *s = src + 4; uint8_t *d = dst; int width = w; do { uint8x8_t t8, t9, t10, t11; load_u8_8x8(s, src_stride, &t4, &t5, &t6, &t7, &t8, &t9, &t10, &t11); transpose_elems_inplace_u8_8x8(&t4, &t5, &t6, &t7, &t8, &t9, &t10, &t11); int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8)); int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9)); int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10)); int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11)); uint8x8_t d0 = scale_filter6_8(s0, s1, s2, s3, s4, s5, filters); uint8x8_t d1 = scale_filter6_8(s4, s5, s6, s7, s8, s9, filters); uint8x8x2_t d01 = vtrn_u8(d0, d1); store_u8x2_strided_x4(d + 0 * dst_stride, 2 * dst_stride, d01.val[0]); store_u8x2_strided_x4(d + 1 * dst_stride, 2 * dst_stride, d01.val[1]); s0 = s8; s1 = s9; s2 = s10; s3 = s11; d += 2; s += 8; width -= 2; } while (width > 0); dst += 8 * dst_stride; src += 8 * src_stride; h -= 8; } while (h > 0); } static inline void scale_plane_4_to_1_6tap(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int16_t *const filter_ptr, uint8_t *const im_block) { assert(w > 0 && h > 0); const int im_h = 4 * h + SUBPEL_TAPS - 3; const int im_stride = (w + 1) & ~1; // All filter values are even, halve them to stay in 16-bit elements when // applying filter. const int16x8_t filters = vshrq_n_s16(vld1q_s16(filter_ptr), 1); const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 2; const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 2) * src_stride; scale_4_to_1_horiz_6tap(src - horiz_offset - vert_offset, src_stride, w, im_h, im_block, im_stride, filters); scale_4_to_1_vert_6tap(im_block, im_stride, w, h, dst, dst_stride, filters); } static inline uint8x8_t scale_filter_bilinear(const uint8x8_t *const s, const uint8x8_t *const coef) { const uint16x8_t h0 = vmull_u8(s[0], coef[0]); const uint16x8_t h1 = vmlal_u8(h0, s[1], coef[1]); return vrshrn_n_u16(h1, 7); } // Notes for 4 to 3 scaling: // // 1. 6 rows are calculated in each horizontal inner loop, so width_hor must be // multiple of 6, and no less than w. // // 2. 8 rows are calculated in each vertical inner loop, so width_ver must be // multiple of 8, and no less than w. // // 3. 8 columns are calculated in each horizontal inner loop for further // vertical scaling, so height_hor must be multiple of 8, and no less than // 4 * h / 3. // // 4. 6 columns are calculated in each vertical inner loop, so height_ver must // be multiple of 6, and no less than h. // // 5. The physical location of the last row of the 4 to 3 scaled frame is // decided by phase_scaler, and are always less than 1 pixel below the last row // of the original image. static inline void scale_plane_4_to_3_bilinear( const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const int phase_scaler, uint8_t *const temp_buffer) { static const int step_q4 = 16 * 4 / 3; const int width_hor = (w + 5) - ((w + 5) % 6); const int stride_hor = width_hor + 2; // store 2 extra pixels const int width_ver = (w + 7) & ~7; // We only need 1 extra row below because there are only 2 bilinear // coefficients. const int height_hor = (4 * h / 3 + 1 + 7) & ~7; const int height_ver = (h + 5) - ((h + 5) % 6); int x, y = height_hor; uint8_t *t = temp_buffer; uint8x8_t s[9], d[8], c[6]; const InterpKernel *interp_kernel = (const InterpKernel *)av1_interp_filter_params_list[BILINEAR].filter_ptr; assert(w && h); c[0] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][3]); c[1] = vdup_n_u8((uint8_t)interp_kernel[phase_scaler][4]); c[2] = vdup_n_u8( (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][3]); c[3] = vdup_n_u8( (uint8_t)interp_kernel[(phase_scaler + 1 * step_q4) & SUBPEL_MASK][4]); c[4] = vdup_n_u8( (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][3]); c[5] = vdup_n_u8( (uint8_t)interp_kernel[(phase_scaler + 2 * step_q4) & SUBPEL_MASK][4]); d[6] = vdup_n_u8(0); d[7] = vdup_n_u8(0); // horizontal 6x8 do { load_u8_8x8(src, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); src += 1; transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); x = width_hor; do { load_u8_8x8(src, src_stride, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7], &s[8]); src += 8; transpose_elems_inplace_u8_8x8(&s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7], &s[8]); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 d[0] = scale_filter_bilinear(&s[0], &c[0]); d[1] = scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); d[2] = scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); d[3] = scale_filter_bilinear(&s[4], &c[0]); d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], &c[2]); d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], &c[4]); // 00 01 02 03 04 05 xx xx // 10 11 12 13 14 15 xx xx // 20 21 22 23 24 25 xx xx // 30 31 32 33 34 35 xx xx // 40 41 42 43 44 45 xx xx // 50 51 52 53 54 55 xx xx // 60 61 62 63 64 65 xx xx // 70 71 72 73 74 75 xx xx transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); // store 2 extra pixels vst1_u8(t + 0 * stride_hor, d[0]); vst1_u8(t + 1 * stride_hor, d[1]); vst1_u8(t + 2 * stride_hor, d[2]); vst1_u8(t + 3 * stride_hor, d[3]); vst1_u8(t + 4 * stride_hor, d[4]); vst1_u8(t + 5 * stride_hor, d[5]); vst1_u8(t + 6 * stride_hor, d[6]); vst1_u8(t + 7 * stride_hor, d[7]); s[0] = s[8]; t += 6; x -= 6; } while (x); src += 8 * src_stride - 4 * width_hor / 3 - 1; t += 7 * stride_hor + 2; y -= 8; } while (y); // vertical 8x6 x = width_ver; t = temp_buffer; do { load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); t += stride_hor; y = height_ver; do { load_u8_8x8(t, stride_hor, &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7], &s[8]); t += 8 * stride_hor; d[0] = scale_filter_bilinear(&s[0], &c[0]); d[1] = scale_filter_bilinear(&s[(phase_scaler + 1 * step_q4) >> 4], &c[2]); d[2] = scale_filter_bilinear(&s[(phase_scaler + 2 * step_q4) >> 4], &c[4]); d[3] = scale_filter_bilinear(&s[4], &c[0]); d[4] = scale_filter_bilinear(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], &c[2]); d[5] = scale_filter_bilinear(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], &c[4]); vst1_u8(dst + 0 * dst_stride, d[0]); vst1_u8(dst + 1 * dst_stride, d[1]); vst1_u8(dst + 2 * dst_stride, d[2]); vst1_u8(dst + 3 * dst_stride, d[3]); vst1_u8(dst + 4 * dst_stride, d[4]); vst1_u8(dst + 5 * dst_stride, d[5]); s[0] = s[8]; dst += 6 * dst_stride; y -= 6; } while (y); t -= stride_hor * (4 * height_ver / 3 + 1); t += 8; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } static inline uint8x8_t scale_filter_8(const uint8x8_t *const s, const int16x8_t filter) { const int16x4_t filter_lo = vget_low_s16(filter); const int16x4_t filter_hi = vget_high_s16(filter); int16x8_t ss0 = vreinterpretq_s16_u16(vmovl_u8(s[0])); int16x8_t ss1 = vreinterpretq_s16_u16(vmovl_u8(s[1])); int16x8_t ss2 = vreinterpretq_s16_u16(vmovl_u8(s[2])); int16x8_t ss3 = vreinterpretq_s16_u16(vmovl_u8(s[3])); int16x8_t ss4 = vreinterpretq_s16_u16(vmovl_u8(s[4])); int16x8_t ss5 = vreinterpretq_s16_u16(vmovl_u8(s[5])); int16x8_t ss6 = vreinterpretq_s16_u16(vmovl_u8(s[6])); int16x8_t ss7 = vreinterpretq_s16_u16(vmovl_u8(s[7])); int16x8_t sum = vmulq_lane_s16(ss0, filter_lo, 0); sum = vmlaq_lane_s16(sum, ss1, filter_lo, 1); sum = vmlaq_lane_s16(sum, ss2, filter_lo, 2); sum = vmlaq_lane_s16(sum, ss5, filter_hi, 1); sum = vmlaq_lane_s16(sum, ss6, filter_hi, 2); sum = vmlaq_lane_s16(sum, ss7, filter_hi, 3); sum = vqaddq_s16(sum, vmulq_lane_s16(ss3, filter_lo, 3)); sum = vqaddq_s16(sum, vmulq_lane_s16(ss4, filter_hi, 0)); return vqrshrun_n_s16(sum, FILTER_BITS); } static inline void scale_plane_4_to_3_8tap(const uint8_t *src, const int src_stride, uint8_t *dst, const int dst_stride, const int w, const int h, const InterpKernel *const coef, const int phase_scaler, uint8_t *const temp_buffer) { static const int step_q4 = 16 * 4 / 3; const int width_hor = (w + 5) - ((w + 5) % 6); const int stride_hor = width_hor + 2; // store 2 extra pixels const int width_ver = (w + 7) & ~7; // We need (SUBPEL_TAPS - 1) extra rows: (SUBPEL_TAPS / 2 - 1) extra rows // above and (SUBPEL_TAPS / 2) extra rows below. const int height_hor = (4 * h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; const int height_ver = (h + 5) - ((h + 5) % 6); const int16x8_t filters0 = vld1q_s16( (const int16_t *)&coef[(phase_scaler + 0 * step_q4) & SUBPEL_MASK]); const int16x8_t filters1 = vld1q_s16( (const int16_t *)&coef[(phase_scaler + 1 * step_q4) & SUBPEL_MASK]); const int16x8_t filters2 = vld1q_s16( (const int16_t *)&coef[(phase_scaler + 2 * step_q4) & SUBPEL_MASK]); int x, y = height_hor; uint8_t *t = temp_buffer; uint8x8_t s[15], d[8]; assert(w > 0 && h > 0); src -= (SUBPEL_TAPS / 2 - 1) * src_stride + SUBPEL_TAPS / 2; d[6] = vdup_n_u8(0); d[7] = vdup_n_u8(0); // horizontal 6x8 do { load_u8_8x8(src + 1, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); transpose_elems_inplace_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); x = width_hor; do { src += 8; load_u8_8x8(src, src_stride, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13], &s[14]); transpose_elems_inplace_u8_8x8(&s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13], &s[14]); // 00 10 20 30 40 50 60 70 // 01 11 21 31 41 51 61 71 // 02 12 22 32 42 52 62 72 // 03 13 23 33 43 53 63 73 // 04 14 24 34 44 54 64 74 // 05 15 25 35 45 55 65 75 d[0] = scale_filter_8(&s[0], filters0); d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); d[3] = scale_filter_8(&s[4], filters0); d[4] = scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); d[5] = scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); // 00 01 02 03 04 05 xx xx // 10 11 12 13 14 15 xx xx // 20 21 22 23 24 25 xx xx // 30 31 32 33 34 35 xx xx // 40 41 42 43 44 45 xx xx // 50 51 52 53 54 55 xx xx // 60 61 62 63 64 65 xx xx // 70 71 72 73 74 75 xx xx transpose_elems_inplace_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]); // store 2 extra pixels vst1_u8(t + 0 * stride_hor, d[0]); vst1_u8(t + 1 * stride_hor, d[1]); vst1_u8(t + 2 * stride_hor, d[2]); vst1_u8(t + 3 * stride_hor, d[3]); vst1_u8(t + 4 * stride_hor, d[4]); vst1_u8(t + 5 * stride_hor, d[5]); vst1_u8(t + 6 * stride_hor, d[6]); vst1_u8(t + 7 * stride_hor, d[7]); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; s[6] = s[14]; t += 6; x -= 6; } while (x); src += 8 * src_stride - 4 * width_hor / 3; t += 7 * stride_hor + 2; y -= 8; } while (y); // vertical 8x6 x = width_ver; t = temp_buffer; do { load_u8_8x8(t, stride_hor, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6], &s[7]); t += 7 * stride_hor; y = height_ver; do { load_u8_8x8(t, stride_hor, &s[7], &s[8], &s[9], &s[10], &s[11], &s[12], &s[13], &s[14]); t += 8 * stride_hor; d[0] = scale_filter_8(&s[0], filters0); d[1] = scale_filter_8(&s[(phase_scaler + 1 * step_q4) >> 4], filters1); d[2] = scale_filter_8(&s[(phase_scaler + 2 * step_q4) >> 4], filters2); d[3] = scale_filter_8(&s[4], filters0); d[4] = scale_filter_8(&s[4 + ((phase_scaler + 1 * step_q4) >> 4)], filters1); d[5] = scale_filter_8(&s[4 + ((phase_scaler + 2 * step_q4) >> 4)], filters2); vst1_u8(dst + 0 * dst_stride, d[0]); vst1_u8(dst + 1 * dst_stride, d[1]); vst1_u8(dst + 2 * dst_stride, d[2]); vst1_u8(dst + 3 * dst_stride, d[3]); vst1_u8(dst + 4 * dst_stride, d[4]); vst1_u8(dst + 5 * dst_stride, d[5]); s[0] = s[8]; s[1] = s[9]; s[2] = s[10]; s[3] = s[11]; s[4] = s[12]; s[5] = s[13]; s[6] = s[14]; dst += 6 * dst_stride; y -= 6; } while (y); t -= stride_hor * (4 * height_ver / 3 + 7); t += 8; dst -= height_ver * dst_stride; dst += 8; x -= 8; } while (x); } // There's SIMD optimizations for 1/4, 1/2 and 3/4 downscaling in NEON. static inline bool has_normative_scaler_neon(const int src_width, const int src_height, const int dst_width, const int dst_height) { const bool has_normative_scaler = (2 * dst_width == src_width && 2 * dst_height == src_height) || (4 * dst_width == src_width && 4 * dst_height == src_height) || (4 * dst_width == 3 * src_width && 4 * dst_height == 3 * src_height); return has_normative_scaler; } void av1_resize_and_extend_frame_neon(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, const InterpFilter filter, const int phase, const int num_planes) { assert(filter == BILINEAR || filter == EIGHTTAP_SMOOTH || filter == EIGHTTAP_REGULAR); bool has_normative_scaler = has_normative_scaler_neon(src->y_crop_width, src->y_crop_height, dst->y_crop_width, dst->y_crop_height); if (num_planes > 1) { has_normative_scaler = has_normative_scaler && has_normative_scaler_neon(src->uv_crop_width, src->uv_crop_height, dst->uv_crop_width, dst->uv_crop_height); } if (!has_normative_scaler) { av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); return; } // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet // the static analysis warnings. int malloc_failed = 0; for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); ++i) { const int is_uv = i > 0; const int src_w = src->crop_widths[is_uv]; const int src_h = src->crop_heights[is_uv]; const int dst_w = dst->crop_widths[is_uv]; const int dst_h = dst->crop_heights[is_uv]; const int dst_y_w = (dst->crop_widths[0] + 1) & ~1; const int dst_y_h = (dst->crop_heights[0] + 1) & ~1; if (2 * dst_w == src_w && 2 * dst_h == src_h) { if (phase == 0) { scale_plane_2_to_1_phase_0(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h); } else if (filter == BILINEAR) { const int16_t c0 = av1_bilinear_filters[phase][3]; const int16_t c1 = av1_bilinear_filters[phase][4]; scale_plane_2_to_1_bilinear(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, c0, c1); } else { const int buffer_stride = (dst_y_w + 3) & ~3; const int buffer_height = (2 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (!temp_buffer) { malloc_failed = 1; break; } const InterpKernel *interp_kernel = (const InterpKernel *)av1_interp_filter_params_list[filter] .filter_ptr; scale_plane_2_to_1_6tap(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, interp_kernel[phase], temp_buffer); free(temp_buffer); } } else if (4 * dst_w == src_w && 4 * dst_h == src_h) { if (phase == 0) { scale_plane_4_to_1_phase_0(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h); } else if (filter == BILINEAR) { const int16_t c0 = av1_bilinear_filters[phase][3]; const int16_t c1 = av1_bilinear_filters[phase][4]; scale_plane_4_to_1_bilinear(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, c0, c1); } else { const int buffer_stride = (dst_y_w + 1) & ~1; const int buffer_height = (4 * dst_y_h + SUBPEL_TAPS - 2 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (!temp_buffer) { malloc_failed = 1; break; } const InterpKernel *interp_kernel = (const InterpKernel *)av1_interp_filter_params_list[filter] .filter_ptr; scale_plane_4_to_1_6tap(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, interp_kernel[phase], temp_buffer); free(temp_buffer); } } else { assert(4 * dst_w == 3 * src_w && 4 * dst_h == 3 * src_h); // 4 to 3 const int buffer_stride = (dst_y_w + 5) - ((dst_y_w + 5) % 6) + 2; const int buffer_height = (4 * dst_y_h / 3 + SUBPEL_TAPS - 1 + 7) & ~7; uint8_t *const temp_buffer = (uint8_t *)malloc(buffer_stride * buffer_height); if (!temp_buffer) { malloc_failed = 1; break; } if (filter == BILINEAR) { scale_plane_4_to_3_bilinear(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, phase, temp_buffer); } else { const InterpKernel *interp_kernel = (const InterpKernel *)av1_interp_filter_params_list[filter] .filter_ptr; scale_plane_4_to_3_8tap(src->buffers[i], src->strides[is_uv], dst->buffers[i], dst->strides[is_uv], dst_w, dst_h, interp_kernel, phase, temp_buffer); } free(temp_buffer); } } if (malloc_failed) { av1_resize_and_extend_frame_c(src, dst, filter, phase, num_planes); } else { aom_extend_frame_borders(dst, num_planes); } }