/* * Copyright © 2023 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "ac_nir.h" #include "nir_builder.h" /** * Build a manual selection sequence for cube face sc/tc coordinates and * major axis vector (multiplied by 2 for consistency) for the given * vec3 \p coords, for the face implied by \p selcoords. * * For the major axis, we always adjust the sign to be in the direction of * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards * the selcoords major axis. */ static void build_cube_select(nir_builder *b, nir_def *ma, nir_def *id, nir_def *deriv, nir_def **out_ma, nir_def **out_sc, nir_def **out_tc) { nir_def *deriv_x = nir_channel(b, deriv, 0); nir_def *deriv_y = nir_channel(b, deriv, 1); nir_def *deriv_z = nir_channel(b, deriv, 2); nir_def *is_ma_positive = nir_fge_imm(b, ma, 0.0); nir_def *sgn_ma = nir_bcsel(b, is_ma_positive, nir_imm_float(b, 1.0), nir_imm_float(b, -1.0)); nir_def *neg_sgn_ma = nir_fneg(b, sgn_ma); nir_def *is_ma_z = nir_fge_imm(b, id, 4.0); nir_def *is_ma_y = nir_fge_imm(b, id, 2.0); is_ma_y = nir_iand(b, is_ma_y, nir_inot(b, is_ma_z)); nir_def *is_not_ma_x = nir_ior(b, is_ma_z, is_ma_y); /* Select sc */ nir_def *tmp = nir_bcsel(b, is_not_ma_x, deriv_x, deriv_z); nir_def *sgn = nir_bcsel(b, is_ma_y, nir_imm_float(b, 1.0), nir_bcsel(b, is_ma_z, sgn_ma, neg_sgn_ma)); *out_sc = nir_fmul(b, tmp, sgn); /* Select tc */ tmp = nir_bcsel(b, is_ma_y, deriv_z, deriv_y); sgn = nir_bcsel(b, is_ma_y, sgn_ma, nir_imm_float(b, -1.0)); *out_tc = nir_fmul(b, tmp, sgn); /* Select ma */ tmp = nir_bcsel(b, is_ma_z, deriv_z, nir_bcsel(b, is_ma_y, deriv_y, deriv_x)); *out_ma = nir_fmul_imm(b, nir_fabs(b, tmp), 2.0); } static void prepare_cube_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coord, nir_src *ddx, nir_src *ddy, const ac_nir_lower_tex_options *options) { nir_def *coords[NIR_MAX_VEC_COMPONENTS] = {0}; for (unsigned i = 0; i < (*coord)->num_components; i++) coords[i] = nir_channel(b, *coord, i); /* Section 8.9 (Texture Functions) of the GLSL 4.50 spec says: * * "For Array forms, the array layer used will be * * max(0, min(d−1, floor(layer+0.5))) * * where d is the depth of the texture array and layer * comes from the component indicated in the tables below. * Workaroudn for an issue where the layer is taken from a * helper invocation which happens to fall on a different * layer due to extrapolation." * * GFX8 and earlier attempt to implement this in hardware by * clamping the value of coords[2] = (8 * layer) + face. * Unfortunately, this means that the we end up with the wrong * face when clamping occurs. * * Clamp the layer earlier to work around the issue. */ if (tex->is_array && options->gfx_level <= GFX8 && coords[3]) coords[3] = nir_fmax(b, coords[3], nir_imm_float(b, 0.0)); nir_def *cube_coords = nir_cube_amd(b, nir_vec(b, coords, 3)); nir_def *sc = nir_channel(b, cube_coords, 1); nir_def *tc = nir_channel(b, cube_coords, 0); nir_def *ma = nir_channel(b, cube_coords, 2); nir_def *invma = nir_frcp(b, nir_fabs(b, ma)); nir_def *id = nir_channel(b, cube_coords, 3); if (ddx || ddy) { sc = nir_fmul(b, sc, invma); tc = nir_fmul(b, tc, invma); /* Convert cube derivatives to 2D derivatives. */ for (unsigned i = 0; i < 2; i++) { /* Transform the derivative alongside the texture * coordinate. Mathematically, the correct formula is * as follows. Assume we're projecting onto the +Z face * and denote by dx/dh the derivative of the (original) * X texture coordinate with respect to horizontal * window coordinates. The projection onto the +Z face * plane is: * * f(x,z) = x/z * * Then df/dh = df/dx * dx/dh + df/dz * dz/dh * = 1/z * dx/dh - x/z * 1/z * dz/dh. * * This motivatives the implementation below. * * Whether this actually gives the expected results for * apps that might feed in derivatives obtained via * finite differences is anyone's guess. The OpenGL spec * seems awfully quiet about how textureGrad for cube * maps should be handled. */ nir_def *deriv_ma, *deriv_sc, *deriv_tc; build_cube_select(b, ma, id, i ? ddy->ssa : ddx->ssa, &deriv_ma, &deriv_sc, &deriv_tc); deriv_ma = nir_fmul(b, deriv_ma, invma); nir_def *x = nir_fsub(b, nir_fmul(b, deriv_sc, invma), nir_fmul(b, deriv_ma, sc)); nir_def *y = nir_fsub(b, nir_fmul(b, deriv_tc, invma), nir_fmul(b, deriv_ma, tc)); nir_src_rewrite(i ? ddy : ddx, nir_vec2(b, x, y)); } sc = nir_fadd_imm(b, sc, 1.5); tc = nir_fadd_imm(b, tc, 1.5); } else { sc = nir_ffma_imm2(b, sc, invma, 1.5); tc = nir_ffma_imm2(b, tc, invma, 1.5); } if (tex->is_array && coords[3]) id = nir_ffma_imm1(b, coords[3], 8.0, id); *coord = nir_vec3(b, sc, tc, id); tex->is_array = true; } static bool lower_array_layer_round_even(nir_builder *b, nir_tex_instr *tex, nir_def **coords) { int coord_index = nir_tex_instr_src_index(tex, nir_tex_src_coord); if (coord_index < 0 || nir_tex_instr_src_type(tex, coord_index) != nir_type_float) return false; unsigned layer = tex->coord_components - 1; nir_def *rounded_layer = nir_fround_even(b, nir_channel(b, *coords, layer)); *coords = nir_vector_insert_imm(b, *coords, rounded_layer, layer); return true; } static bool lower_tex_coords(nir_builder *b, nir_tex_instr *tex, nir_def **coords, const ac_nir_lower_tex_options *options) { bool progress = false; if ((options->lower_array_layer_round_even || tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE) && tex->is_array && tex->op != nir_texop_lod) progress |= lower_array_layer_round_even(b, tex, coords); if (tex->sampler_dim != GLSL_SAMPLER_DIM_CUBE) return progress; int ddx_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddx); int ddy_idx = nir_tex_instr_src_index(tex, nir_tex_src_ddy); nir_src *ddx = ddx_idx >= 0 ? &tex->src[ddx_idx].src : NULL; nir_src *ddy = ddy_idx >= 0 ? &tex->src[ddy_idx].src : NULL; prepare_cube_coords(b, tex, coords, ddx, ddy, options); return true; } static bool lower_tex(nir_builder *b, nir_instr *instr, void *options_) { const ac_nir_lower_tex_options *options = options_; if (instr->type != nir_instr_type_tex) return false; nir_tex_instr *tex = nir_instr_as_tex(instr); int coord_idx = nir_tex_instr_src_index(tex, nir_tex_src_coord); if (coord_idx < 0 || nir_tex_instr_src_index(tex, nir_tex_src_backend1) >= 0) return false; b->cursor = nir_before_instr(instr); nir_def *coords = tex->src[coord_idx].src.ssa; if (lower_tex_coords(b, tex, &coords, options)) { tex->coord_components = coords->num_components; nir_src_rewrite(&tex->src[coord_idx].src, coords); return true; } return false; } typedef struct { nir_intrinsic_instr *bary; nir_intrinsic_instr *load; } coord_info; static bool can_move_coord(nir_scalar scalar, coord_info *info) { if (scalar.def->bit_size != 32) return false; if (nir_scalar_is_const(scalar)) return true; if (!nir_scalar_is_intrinsic(scalar)) return false; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(scalar.def->parent_instr); if (intrin->intrinsic == nir_intrinsic_load_input || intrin->intrinsic == nir_intrinsic_load_per_primitive_input) { info->bary = NULL; info->load = intrin; return true; } if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) return false; nir_scalar coord_x = nir_scalar_resolved(intrin->src[0].ssa, 0); nir_scalar coord_y = nir_scalar_resolved(intrin->src[0].ssa, 1); if (!nir_scalar_is_intrinsic(coord_x) || coord_x.comp != 0 || !nir_scalar_is_intrinsic(coord_y) || coord_y.comp != 1) return false; nir_intrinsic_instr *intrin_x = nir_instr_as_intrinsic(coord_x.def->parent_instr); nir_intrinsic_instr *intrin_y = nir_instr_as_intrinsic(coord_y.def->parent_instr); if (intrin_x->intrinsic != intrin_y->intrinsic || (intrin_x->intrinsic != nir_intrinsic_load_barycentric_sample && intrin_x->intrinsic != nir_intrinsic_load_barycentric_pixel && intrin_x->intrinsic != nir_intrinsic_load_barycentric_centroid) || nir_intrinsic_interp_mode(intrin_x) != nir_intrinsic_interp_mode(intrin_y)) return false; info->bary = intrin_x; info->load = intrin; return true; } struct move_tex_coords_state { const ac_nir_lower_tex_options *options; unsigned num_wqm_vgprs; nir_builder toplevel_b; }; static nir_def * build_coordinate(struct move_tex_coords_state *state, nir_scalar scalar, coord_info info) { nir_builder *b = &state->toplevel_b; if (nir_scalar_is_const(scalar)) return nir_imm_intN_t(b, nir_scalar_as_uint(scalar), scalar.def->bit_size); ASSERTED nir_src offset = *nir_get_io_offset_src(info.load); assert(nir_src_is_const(offset) && !nir_src_as_uint(offset)); nir_def *zero = nir_imm_int(b, 0); nir_def *res; if (info.bary) { enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(info.bary); nir_def *bary = nir_load_system_value(b, info.bary->intrinsic, interp_mode, 2, 32); res = nir_load_interpolated_input(b, 1, 32, bary, zero); } else { res = nir_load_input(b, 1, 32, zero); } nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(res->parent_instr); nir_intrinsic_set_base(intrin, nir_intrinsic_base(info.load)); nir_intrinsic_set_component(intrin, nir_intrinsic_component(info.load) + scalar.comp); nir_intrinsic_set_dest_type(intrin, nir_intrinsic_dest_type(info.load)); nir_intrinsic_set_io_semantics(intrin, nir_intrinsic_io_semantics(info.load)); return res; } static bool move_tex_coords(struct move_tex_coords_state *state, nir_function_impl *impl, nir_instr *instr) { nir_tex_instr *tex = nir_instr_as_tex(instr); if (tex->op != nir_texop_tex && tex->op != nir_texop_txb && tex->op != nir_texop_lod) return false; switch (tex->sampler_dim) { case GLSL_SAMPLER_DIM_1D: case GLSL_SAMPLER_DIM_2D: case GLSL_SAMPLER_DIM_3D: case GLSL_SAMPLER_DIM_CUBE: case GLSL_SAMPLER_DIM_EXTERNAL: break; case GLSL_SAMPLER_DIM_RECT: case GLSL_SAMPLER_DIM_BUF: case GLSL_SAMPLER_DIM_MS: case GLSL_SAMPLER_DIM_SUBPASS: case GLSL_SAMPLER_DIM_SUBPASS_MS: return false; /* No LOD or can't be sampled. */ } if (nir_tex_instr_src_index(tex, nir_tex_src_min_lod) != -1) return false; nir_tex_src *src = &tex->src[nir_tex_instr_src_index(tex, nir_tex_src_coord)]; nir_scalar components[NIR_MAX_VEC_COMPONENTS]; coord_info infos[NIR_MAX_VEC_COMPONENTS]; bool can_move_all = true; for (unsigned i = 0; i < tex->coord_components; i++) { components[i] = nir_scalar_resolved(src->src.ssa, i); can_move_all &= can_move_coord(components[i], &infos[i]); } if (!can_move_all) return false; int coord_base = 0; unsigned linear_vgpr_size = tex->coord_components; if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && tex->is_array) linear_vgpr_size--; /* cube array layer and face are combined */ for (unsigned i = 0; i < tex->num_srcs; i++) { switch (tex->src[i].src_type) { case nir_tex_src_offset: case nir_tex_src_bias: case nir_tex_src_comparator: coord_base++; linear_vgpr_size++; break; default: break; } } if (state->num_wqm_vgprs + linear_vgpr_size > state->options->max_wqm_vgprs) return false; for (unsigned i = 0; i < tex->coord_components; i++) components[i] = nir_get_scalar(build_coordinate(state, components[i], infos[i]), 0); nir_def *linear_vgpr = nir_vec_scalars(&state->toplevel_b, components, tex->coord_components); lower_tex_coords(&state->toplevel_b, tex, &linear_vgpr, state->options); linear_vgpr = nir_strict_wqm_coord_amd(&state->toplevel_b, linear_vgpr, coord_base * 4); nir_tex_instr_remove_src(tex, nir_tex_instr_src_index(tex, nir_tex_src_coord)); tex->coord_components = 0; nir_tex_instr_add_src(tex, nir_tex_src_backend1, linear_vgpr); int offset_src = nir_tex_instr_src_index(tex, nir_tex_src_offset); if (offset_src >= 0) /* Workaround requirement in nir_tex_instr_src_size(). */ tex->src[offset_src].src_type = nir_tex_src_backend2; state->num_wqm_vgprs += linear_vgpr_size; return true; } static bool move_ddxy(struct move_tex_coords_state *state, nir_function_impl *impl, nir_intrinsic_instr *instr) { unsigned num_components = instr->def.num_components; nir_scalar components[NIR_MAX_VEC_COMPONENTS]; coord_info infos[NIR_MAX_VEC_COMPONENTS]; bool can_move_all = true; for (unsigned i = 0; i < num_components; i++) { components[i] = nir_scalar_resolved(instr->src[0].ssa, i); can_move_all &= can_move_coord(components[i], &infos[i]); } if (!can_move_all || state->num_wqm_vgprs + num_components > state->options->max_wqm_vgprs) return false; for (unsigned i = 0; i < num_components; i++) { nir_def *def = build_coordinate(state, components[i], infos[i]); components[i] = nir_get_scalar(def, 0); } nir_def *def = nir_vec_scalars(&state->toplevel_b, components, num_components); def = _nir_build_ddx(&state->toplevel_b, def->bit_size, def); nir_instr_as_intrinsic(def->parent_instr)->intrinsic = instr->intrinsic; nir_def_rewrite_uses(&instr->def, def); state->num_wqm_vgprs += num_components; return true; } static bool move_coords_from_divergent_cf(struct move_tex_coords_state *state, nir_function_impl *impl, struct exec_list *cf_list, bool *divergent_discard, bool divergent_cf) { bool progress = false; foreach_list_typed (nir_cf_node, cf_node, node, cf_list) { switch (cf_node->type) { case nir_cf_node_block: { nir_block *block = nir_cf_node_as_block(cf_node); bool top_level = cf_list == &impl->body; nir_foreach_instr (instr, block) { if (top_level && !*divergent_discard) state->toplevel_b.cursor = nir_before_instr(instr); if (instr->type == nir_instr_type_tex && (divergent_cf || *divergent_discard)) { progress |= move_tex_coords(state, impl, instr); } else if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_terminate: if (divergent_cf) *divergent_discard = true; break; case nir_intrinsic_terminate_if: if (divergent_cf || nir_src_is_divergent(&intrin->src[0])) *divergent_discard = true; break; case nir_intrinsic_ddx: case nir_intrinsic_ddy: case nir_intrinsic_ddx_fine: case nir_intrinsic_ddy_fine: case nir_intrinsic_ddx_coarse: case nir_intrinsic_ddy_coarse: if (divergent_cf || *divergent_discard) progress |= move_ddxy(state, impl, intrin); break; default: break; } } } if (top_level && !*divergent_discard) state->toplevel_b.cursor = nir_after_block_before_jump(block); break; } case nir_cf_node_if: { nir_if *nif = nir_cf_node_as_if(cf_node); bool divergent_discard_then = *divergent_discard; bool divergent_discard_else = *divergent_discard; bool then_else_divergent = divergent_cf || nir_src_is_divergent(&nif->condition); progress |= move_coords_from_divergent_cf(state, impl, &nif->then_list, &divergent_discard_then, then_else_divergent); progress |= move_coords_from_divergent_cf(state, impl, &nif->else_list, &divergent_discard_else, then_else_divergent); *divergent_discard |= divergent_discard_then || divergent_discard_else; break; } case nir_cf_node_loop: { nir_loop *loop = nir_cf_node_as_loop(cf_node); assert(!nir_loop_has_continue_construct(loop)); progress |= move_coords_from_divergent_cf(state, impl, &loop->body, divergent_discard, true); break; } case nir_cf_node_function: unreachable("Invalid cf type"); } } return progress; } bool ac_nir_lower_tex(nir_shader *nir, const ac_nir_lower_tex_options *options) { bool progress = false; if (options->fix_derivs_in_divergent_cf) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); struct move_tex_coords_state state; state.toplevel_b = nir_builder_create(impl); state.options = options; state.num_wqm_vgprs = 0; bool divergent_discard = false; if (move_coords_from_divergent_cf(&state, impl, &impl->body, &divergent_discard, false)) nir_metadata_preserve(impl, nir_metadata_control_flow); else nir_metadata_preserve(impl, nir_metadata_all); } progress |= nir_shader_instructions_pass( nir, lower_tex, nir_metadata_control_flow, (void *)options); return progress; }