/* * Copyright © 2019 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_builder.h" #include "aco_ir.h" #include namespace aco { namespace { enum WQMState : uint8_t { Unspecified = 0, Exact, WQM, /* with control flow applied */ }; enum mask_type : uint8_t { mask_type_global = 1 << 0, mask_type_exact = 1 << 1, mask_type_wqm = 1 << 2, mask_type_loop = 1 << 3, /* active lanes of a loop */ }; struct loop_info { Block* loop_header; uint16_t num_exec_masks; bool has_divergent_break; bool has_divergent_continue; bool has_discard; /* has a discard or demote */ loop_info(Block* b, uint16_t num, bool breaks, bool cont, bool discard) : loop_header(b), num_exec_masks(num), has_divergent_break(breaks), has_divergent_continue(cont), has_discard(discard) {} }; struct exec_info { Operand op; /* Either a temporary, exec or const -1. */ uint8_t type; /* enum mask_type */ exec_info() = default; exec_info(const Operand& op_, const uint8_t& type_) : op(op_), type(type_) {} }; struct block_info { std::vector exec; }; struct exec_ctx { Program* program; std::vector info; std::vector loop; bool handle_wqm = false; exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {} }; bool needs_exact(aco_ptr& instr) { if (instr->isMUBUF()) { return instr->mubuf().disable_wqm; } else if (instr->isMTBUF()) { return instr->mtbuf().disable_wqm; } else if (instr->isMIMG()) { return instr->mimg().disable_wqm; } else if (instr->isFlatLike()) { return instr->flatlike().disable_wqm; } else { /* Require Exact for p_jump_to_epilog because if p_exit_early_if_not is * emitted inside the same block, the main FS will always jump to the PS * epilog without considering the exec mask. */ return instr->isEXP() || instr->opcode == aco_opcode::p_jump_to_epilog || instr->opcode == aco_opcode::p_dual_src_export_gfx11; } } WQMState get_instr_needs(aco_ptr& instr) { if (needs_exact(instr)) return Exact; bool pred_by_exec = needs_exec_mask(instr.get()) || instr->opcode == aco_opcode::p_logical_end || instr->isBranch(); return pred_by_exec ? WQM : Unspecified; } void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().type & mask_type_wqm) return; if (ctx.info[idx].exec.back().type & mask_type_global) { Operand exec_mask = ctx.info[idx].exec.back().op; if (exec_mask == Operand(exec, bld.lm)) ctx.info[idx].exec.back().op = bld.copy(bld.def(bld.lm), exec_mask); bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), exec_mask); ctx.info[idx].exec.emplace_back(Operand(exec, bld.lm), mask_type_global | mask_type_wqm); return; } /* otherwise, the WQM mask should be one below the current mask */ ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().type & mask_type_wqm); assert(ctx.info[idx].exec.back().op.size() == bld.lm.size()); assert(ctx.info[idx].exec.back().op.isTemp()); bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().op); } void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().type & mask_type_exact) return; /* We can't remove the loop exec mask, because that can cause exec.size() to * be less than num_exec_masks. The loop exec mask also needs to be kept * around for various uses. */ if ((ctx.info[idx].exec.back().type & mask_type_global) && !(ctx.info[idx].exec.back().type & mask_type_loop)) { ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().type & mask_type_exact); assert(ctx.info[idx].exec.back().op.size() == bld.lm.size()); assert(ctx.info[idx].exec.back().op.isTemp()); bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().op); return; } /* otherwise, we create an exact mask and push to the stack */ Operand wqm = ctx.info[idx].exec.back().op; if (wqm == Operand(exec, bld.lm)) { wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), ctx.info[idx].exec[0].op, Operand(exec, bld.lm)); } else { bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc), ctx.info[idx].exec[0].op, wqm); } ctx.info[idx].exec.back().op = Operand(wqm); ctx.info[idx].exec.emplace_back(Operand(exec, bld.lm), mask_type_exact); } unsigned add_coupling_code(exec_ctx& ctx, Block* block, std::vector>& instructions) { unsigned idx = block->index; Builder bld(ctx.program, &instructions); Block::edge_vec& preds = block->linear_preds; bool restore_exec = false; /* start block */ if (preds.empty()) { aco_ptr& startpgm = block->instructions[0]; assert(startpgm->opcode == aco_opcode::p_startpgm); bld.insert(std::move(startpgm)); unsigned count = 1; while (block->instructions[count]->opcode == aco_opcode::p_init_scratch || block->instructions[count]->opcode == aco_opcode::s_setprio) { bld.insert(std::move(block->instructions[count])); count++; } Operand start_exec(exec, bld.lm); /* exec seems to need to be manually initialized with combined shaders */ if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == AC_HW_NEXT_GEN_GEOMETRY_SHADER || (ctx.program->stage.sw == SWStage::VS && (ctx.program->stage.hw == AC_HW_HULL_SHADER || ctx.program->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER)) || (ctx.program->stage.sw == SWStage::TES && ctx.program->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER)) { start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); bld.copy(Definition(exec, bld.lm), start_exec); } /* EXEC is automatically initialized by the HW for compute shaders. * We know for sure exec is initially -1 when the shader always has full subgroups. */ if (ctx.program->stage == compute_cs && ctx.program->info.cs.uses_full_subgroups) start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); if (ctx.handle_wqm) { ctx.info[idx].exec.emplace_back(start_exec, mask_type_global | mask_type_exact); /* Initialize WQM already */ transition_to_WQM(ctx, bld, idx); } else { uint8_t mask = mask_type_global; if (ctx.program->needs_wqm) { bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), Operand(exec, bld.lm)); mask |= mask_type_wqm; } else { mask |= mask_type_exact; } ctx.info[idx].exec.emplace_back(start_exec, mask); } return count; } /* loop entry block */ if (block->kind & block_kind_loop_header) { assert(preds[0] == idx - 1); ctx.info[idx].exec = ctx.info[idx - 1].exec; loop_info& info = ctx.loop.back(); assert(ctx.info[idx].exec.size() == info.num_exec_masks); /* create ssa names for outer exec masks */ if (info.has_discard && preds.size() > 1) { aco_ptr phi; for (int i = 0; i < info.num_exec_masks - 1; i++) { phi.reset( create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)); phi->definitions[0] = bld.def(bld.lm); phi->operands[0] = ctx.info[preds[0]].exec[i].op; ctx.info[idx].exec[i].op = bld.insert(std::move(phi)); } } ctx.info[idx].exec.back().type |= mask_type_loop; if (info.has_divergent_continue) { /* create ssa name for loop active mask */ aco_ptr phi{ create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(bld.lm); phi->operands[0] = ctx.info[preds[0]].exec.back().op; ctx.info[idx].exec.back().op = bld.insert(std::move(phi)); restore_exec = true; uint8_t mask_type = ctx.info[idx].exec.back().type & (mask_type_wqm | mask_type_exact); ctx.info[idx].exec.emplace_back(ctx.info[idx].exec.back().op, mask_type); } } else if (block->kind & block_kind_loop_exit) { Block* header = ctx.loop.back().loop_header; loop_info& info = ctx.loop.back(); for (ASSERTED unsigned pred : preds) assert(ctx.info[pred].exec.size() >= info.num_exec_masks); /* fill the loop header phis */ Block::edge_vec& header_preds = header->linear_preds; int instr_idx = 0; if (info.has_discard && header_preds.size() > 1) { while (instr_idx < info.num_exec_masks - 1) { aco_ptr& phi = header->instructions[instr_idx]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = ctx.info[header_preds[i]].exec[instr_idx].op; instr_idx++; } } if (info.has_divergent_continue) { aco_ptr& phi = header->instructions[instr_idx++]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].op; restore_exec = true; } if (info.has_divergent_break) { restore_exec = true; /* Drop the loop active mask. */ info.num_exec_masks--; } assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); /* create the loop exit phis if not trivial */ for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) { Operand same = ctx.info[preds[0]].exec[exec_idx].op; uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].type; bool trivial = true; for (unsigned i = 1; i < preds.size() && trivial; i++) { if (ctx.info[preds[i]].exec[exec_idx].op != same) trivial = false; } if (trivial) { ctx.info[idx].exec.emplace_back(same, type); } else { /* create phi for loop footer */ aco_ptr phi{ create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(bld.lm); for (unsigned i = 0; i < phi->operands.size(); i++) phi->operands[i] = ctx.info[preds[i]].exec[exec_idx].op; ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); } } assert(ctx.info[idx].exec.size() == info.num_exec_masks); ctx.loop.pop_back(); } else if (preds.size() == 1) { ctx.info[idx].exec = ctx.info[preds[0]].exec; } else { assert(preds.size() == 2); assert(ctx.info[preds[0]].exec.size() == ctx.info[preds[1]].exec.size()); unsigned last = ctx.info[preds[0]].exec.size() - 1; /* create phis for diverged temporary exec masks */ for (unsigned i = 0; i < last; i++) { /* skip trivial phis */ if (ctx.info[preds[0]].exec[i].op == ctx.info[preds[1]].exec[i].op) { Operand op = ctx.info[preds[0]].exec[i].op; /* discard/demote can change the state of the current exec mask */ assert(!op.isTemp() || ctx.info[preds[0]].exec[i].type == ctx.info[preds[1]].exec[i].type); uint8_t mask = ctx.info[preds[0]].exec[i].type & ctx.info[preds[1]].exec[i].type; ctx.info[idx].exec.emplace_back(op, mask); continue; } Operand phi = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), ctx.info[preds[0]].exec[i].op, ctx.info[preds[1]].exec[i].op); uint8_t mask_type = ctx.info[preds[0]].exec[i].type & ctx.info[preds[1]].exec[i].type; ctx.info[idx].exec.emplace_back(phi, mask_type); } if (block->kind & block_kind_merge) { restore_exec = true; } else { /* The last mask is already in exec. */ Operand current_exec = Operand(exec, bld.lm); if (ctx.info[preds[0]].exec[last].op == ctx.info[preds[1]].exec[last].op) { current_exec = ctx.info[preds[0]].exec[last].op; } uint8_t mask_type = ctx.info[preds[0]].exec[last].type & ctx.info[preds[1]].exec[last].type; ctx.info[idx].exec.emplace_back(current_exec, mask_type); } } unsigned i = 0; while (block->instructions[i]->opcode == aco_opcode::p_phi || block->instructions[i]->opcode == aco_opcode::p_linear_phi) { bld.insert(std::move(block->instructions[i])); i++; } if (ctx.handle_wqm) { /* End WQM handling if not needed anymore */ if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { if (block->instructions[i]->opcode == aco_opcode::p_end_wqm) { ctx.info[idx].exec.back().type |= mask_type_global; transition_to_Exact(ctx, bld, idx); ctx.handle_wqm = false; restore_exec = false; i++; } } } /* restore exec mask after divergent control flow */ if (restore_exec) { Operand restore = ctx.info[idx].exec.back().op; assert(restore.size() == bld.lm.size()); bld.copy(Definition(exec, bld.lm), restore); } return i; } /* Avoid live-range splits in Exact mode: * Because the data register of atomic VMEM instructions * is shared between src and dst, it might be necessary * to create live-range splits during RA. * Make the live-range splits explicit in WQM mode. */ void handle_atomic_data(exec_ctx& ctx, Builder& bld, unsigned block_idx, aco_ptr& instr) { /* check if this is an atomic VMEM instruction */ int idx = -1; if (!instr->isVMEM() || instr->definitions.empty()) return; else if (instr->isMIMG()) idx = instr->operands[2].isTemp() ? 2 : -1; else if (instr->operands.size() == 4) idx = 3; if (idx != -1) { /* insert explicit copy of atomic data in WQM-mode */ transition_to_WQM(ctx, bld, block_idx); Temp data = instr->operands[idx].getTemp(); data = bld.copy(bld.def(data.regClass()), data); instr->operands[idx].setTemp(data); } } void process_instructions(exec_ctx& ctx, Block* block, std::vector>& instructions, unsigned idx) { block_info& info = ctx.info[block->index]; WQMState state; if (info.exec.back().type & mask_type_wqm) { state = WQM; } else { assert(!ctx.handle_wqm || info.exec.back().type & mask_type_exact); state = Exact; } Builder bld(ctx.program, &instructions); for (; idx < block->instructions.size(); idx++) { aco_ptr instr = std::move(block->instructions[idx]); WQMState needs = ctx.handle_wqm ? get_instr_needs(instr) : Unspecified; if (needs == WQM && state != WQM) { transition_to_WQM(ctx, bld, block->index); state = WQM; } else if (needs == Exact) { if (ctx.handle_wqm) handle_atomic_data(ctx, bld, block->index, instr); transition_to_Exact(ctx, bld, block->index); state = Exact; } if (instr->opcode == aco_opcode::p_discard_if) { Operand current_exec = Operand(exec, bld.lm); if (block->instructions[idx + 1]->opcode == aco_opcode::p_end_wqm) { /* Transition to Exact without extra instruction. */ info.exec.resize(1); assert(info.exec[0].type == (mask_type_exact | mask_type_global)); current_exec = info.exec[0].op; info.exec[0].op = Operand(exec, bld.lm); state = Exact; } else if (info.exec.size() >= 2 && ctx.handle_wqm) { /* Preserve the WQM mask */ info.exec[1].type &= ~mask_type_global; } Temp cond; if (instr->operands[0].isConstant()) { assert(instr->operands[0].constantValue() == -1u); /* save condition and set exec to zero */ cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); } else { cond = instr->operands[0].getTemp(); /* discard from current exec */ bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), current_exec, cond); } if (info.exec.size() == 1) { instr->operands[0] = Operand(exec, bld.lm); } else { /* discard from inner to outer exec mask on stack */ int num = info.exec.size() - 2; Temp exit_cond; for (int i = num; i >= 0; i--) { Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), info.exec[i].op, cond); info.exec[i].op = Operand(andn2->definitions[0].getTemp()); exit_cond = andn2->definitions[1].getTemp(); } instr->operands[0] = bld.scc(exit_cond); } info.exec.back().op = Operand(exec, bld.lm); instr->opcode = aco_opcode::p_exit_early_if_not; assert(!ctx.handle_wqm || (info.exec[0].type & mask_type_wqm) == 0); } else if (instr->opcode == aco_opcode::p_is_helper) { Definition dst = instr->definitions[0]; assert(dst.size() == bld.lm.size()); if (state == Exact) { instr.reset(create_instruction(bld.w64or32(Builder::s_mov), Format::SOP1, 1, 1)); instr->operands[0] = Operand::zero(); instr->definitions[0] = dst; } else { exec_info& exact_mask = info.exec[0]; assert(exact_mask.type & mask_type_exact); instr.reset(create_instruction(bld.w64or32(Builder::s_andn2), Format::SOP2, 2, 2)); instr->operands[0] = Operand(exec, bld.lm); /* current exec */ instr->operands[1] = Operand(exact_mask.op); instr->definitions[0] = dst; instr->definitions[1] = bld.def(s1, scc); } } else if (instr->opcode == aco_opcode::p_demote_to_helper) { assert((info.exec[0].type & mask_type_exact) && (info.exec[0].type & mask_type_global)); const bool nested_cf = !(info.exec.back().type & mask_type_global); if (ctx.handle_wqm && state == Exact && nested_cf) { /* Transition back to WQM without extra instruction. */ info.exec.pop_back(); state = WQM; } else if (block->instructions[idx + 1]->opcode == aco_opcode::p_end_wqm) { /* Transition to Exact without extra instruction. */ info.exec.resize(1); state = Exact; } else if (nested_cf) { /* Save curent exec temporarily. */ info.exec.back().op = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); } else { info.exec.back().op = Operand(exec, bld.lm); } /* Remove invocations from global exact mask. */ Definition def = state == Exact ? Definition(exec, bld.lm) : bld.def(bld.lm); Operand src = instr->operands[0].isConstant() ? Operand(exec, bld.lm) : instr->operands[0]; bld.sop2(Builder::s_andn2, def, bld.def(s1, scc), info.exec[0].op, src); info.exec[0].op = def.isTemp() ? Operand(def.getTemp()) : Operand(exec, bld.lm); /* Update global WQM mask and store in exec. */ if (state == WQM) { assert(info.exec.size() > 1); bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), def.getTemp()); } /* End shader if global mask is zero. */ instr->opcode = aco_opcode::p_exit_early_if_not; instr->operands[0] = Operand(exec, bld.lm); bld.insert(std::move(instr)); /* Update all other exec masks. */ if (nested_cf) { const unsigned global_idx = state == WQM ? 1 : 0; for (unsigned i = global_idx + 1; i < info.exec.size() - 1; i++) { info.exec[i].op = bld.sop2(Builder::s_and, bld.def(bld.lm), bld.def(s1, scc), info.exec[i].op, Operand(exec, bld.lm)); } /* Update current exec and save WQM mask. */ info.exec[global_idx].op = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), info.exec.back().op, Operand(exec, bld.lm)); info.exec.back().op = Operand(exec, bld.lm); } continue; } else if (instr->opcode == aco_opcode::p_elect) { bool all_lanes_enabled = info.exec.back().op.constantEquals(-1u); Definition dst = instr->definitions[0]; if (all_lanes_enabled) { bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2)); } else { Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc), Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx)); } continue; } else if (instr->opcode == aco_opcode::p_end_wqm) { assert(block->kind & block_kind_top_level); assert(info.exec.size() <= 2); /* This instruction indicates the end of WQM mode. */ info.exec.back().type |= mask_type_global; transition_to_Exact(ctx, bld, block->index); state = Exact; ctx.handle_wqm = false; continue; } bld.insert(std::move(instr)); } } void add_branch_code(exec_ctx& ctx, Block* block) { unsigned idx = block->index; Builder bld(ctx.program, block); if (block->linear_succs.empty()) return; if (block->kind & block_kind_loop_preheader) { /* collect information about the succeeding loop */ bool has_divergent_break = false; bool has_divergent_continue = false; bool has_discard = false; unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { Block& loop_block = ctx.program->blocks[i]; if (loop_block.kind & block_kind_uses_discard) has_discard = true; if (loop_block.loop_nest_depth != loop_nest_depth) continue; if (loop_block.kind & block_kind_uniform) continue; else if (loop_block.kind & block_kind_break) has_divergent_break = true; else if (loop_block.kind & block_kind_continue) has_divergent_continue = true; } if (has_divergent_break) { /* save restore exec mask */ const Operand& current_exec = ctx.info[idx].exec.back().op; if (!current_exec.isTemp() && !current_exec.isConstant()) { bld.reset(bld.instructions, std::prev(bld.instructions->end())); Operand restore = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); ctx.info[idx].exec.back().op = restore; bld.reset(bld.instructions); } uint8_t mask = ctx.info[idx].exec.back().type & (mask_type_wqm | mask_type_exact); ctx.info[idx].exec.emplace_back(Operand(exec, bld.lm), mask); } unsigned num_exec_masks = ctx.info[idx].exec.size(); ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, has_divergent_break, has_divergent_continue, has_discard); Pseudo_branch_instruction& branch = block->instructions.back()->branch(); branch.target[0] = block->linear_succs[0]; } else if (block->kind & block_kind_continue_or_break) { assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind & block_kind_loop_header); assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit); assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); bool need_parallelcopy = false; while (!(ctx.info[idx].exec.back().type & mask_type_loop)) { ctx.info[idx].exec.pop_back(); need_parallelcopy = true; } if (need_parallelcopy) bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().op); bld.branch(aco_opcode::p_cbranch_nz, Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); } else if (block->kind & block_kind_uniform) { Pseudo_branch_instruction& branch = block->instructions.back()->branch(); if (branch.opcode == aco_opcode::p_branch) { branch.target[0] = block->linear_succs[0]; } else { branch.target[0] = block->linear_succs[1]; branch.target[1] = block->linear_succs[0]; } } else if (block->kind & block_kind_branch) { // orig = s_and_saveexec_b64 assert(block->linear_succs.size() == 2); assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); Temp cond = block->instructions.back()->operands[0].getTemp(); aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); uint8_t mask_type = ctx.info[idx].exec.back().type & (mask_type_wqm | mask_type_exact); if (ctx.info[idx].exec.back().op.constantEquals(-1u)) { bld.copy(Definition(exec, bld.lm), cond); } else if (ctx.info[idx].exec.back().op.isTemp()) { bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc), cond, Operand(exec, bld.lm)); } else { Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), cond, Operand(exec, bld.lm)); ctx.info[idx].exec.back().op = Operand(old_exec); } /* add next current exec to the stack */ ctx.info[idx].exec.emplace_back(Operand(exec, bld.lm), mask_type); Builder::Result r = bld.branch(aco_opcode::p_cbranch_z, Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); r->branch().rarely_taken = branch->branch().rarely_taken; r->branch().never_taken = branch->branch().never_taken; } else if (block->kind & block_kind_invert) { // exec = s_andn2_b64 (original_exec, exec) assert(block->instructions.back()->opcode == aco_opcode::p_branch); aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); assert(ctx.info[idx].exec.size() >= 2); Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].op; bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec, Operand(exec, bld.lm)); Builder::Result r = bld.branch(aco_opcode::p_cbranch_z, Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); r->branch().rarely_taken = branch->branch().rarely_taken; r->branch().never_taken = branch->branch().never_taken; } else if (block->kind & block_kind_break) { // loop_mask = s_andn2_b64 (loop_mask, exec) assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { cond = bld.tmp(s1); Operand exec_mask = ctx.info[idx].exec[exec_idx].op; exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), exec_mask, Operand(exec, bld.lm)); ctx.info[idx].exec[exec_idx].op = exec_mask; if (ctx.info[idx].exec[exec_idx].type & mask_type_loop) break; } /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); } bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); } else if (block->kind & block_kind_continue) { assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { if (ctx.info[idx].exec[exec_idx].type & mask_type_loop) break; cond = bld.tmp(s1); Operand exec_mask = ctx.info[idx].exec[exec_idx].op; exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), exec_mask, Operand(exec, bld.lm)); ctx.info[idx].exec[exec_idx].op = exec_mask; } assert(cond != Temp()); /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); } bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); } else { unreachable("unknown/invalid block type"); } } void process_block(exec_ctx& ctx, Block* block) { std::vector> instructions; instructions.reserve(block->instructions.size()); unsigned idx = add_coupling_code(ctx, block, instructions); assert(!block->linear_succs.empty() || ctx.info[block->index].exec.size() <= 2); process_instructions(ctx, block, instructions, idx); block->instructions = std::move(instructions); add_branch_code(ctx, block); } } /* end namespace */ void insert_exec_mask(Program* program) { exec_ctx ctx(program); if (program->needs_wqm && program->needs_exact) ctx.handle_wqm = true; for (Block& block : program->blocks) process_block(ctx, &block); } } // namespace aco