/* * Copyright © 2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_builtin_builder.h" typedef struct { bool set_barycentrics; nir_intrinsic_instr *found_baryc; } lower_point_smooth_state; static nir_intrinsic_instr * find_any_used_barycentrics(nir_function_impl *impl) { nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type == nir_instr_type_intrinsic) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic == nir_intrinsic_load_barycentric_pixel || intr->intrinsic == nir_intrinsic_load_barycentric_centroid || intr->intrinsic == nir_intrinsic_load_barycentric_sample) return intr; } } } return NULL; } /** * This NIR lowers pass for point smoothing by modifying the alpha value of * fragment outputs using the distance from the center of the point. * Anti-aliased points get rounded with respect to their radius. */ static bool lower_point_smooth(nir_builder *b, nir_intrinsic_instr *intr, void *state) { lower_point_smooth_state *s = (lower_point_smooth_state *)state; if (intr->intrinsic != nir_intrinsic_store_output && intr->intrinsic != nir_intrinsic_store_deref) return false; int out_src_idx; if (intr->intrinsic == nir_intrinsic_store_output) { int location = nir_intrinsic_io_semantics(intr).location; if ((location != FRAG_RESULT_COLOR && location < FRAG_RESULT_DATA0) || nir_intrinsic_src_type(intr) != nir_type_float32) return false; out_src_idx = 0; } else { nir_variable *var = nir_intrinsic_get_var(intr, 0); if ((var->data.location != FRAG_RESULT_COLOR && var->data.location < FRAG_RESULT_DATA0) || glsl_get_base_type(var->type) != GLSL_TYPE_FLOAT) return false; out_src_idx = 1; } assert(intr->num_components == 4); b->cursor = nir_before_instr(&intr->instr); /* Determine the barycentric coordinates. */ nir_def *baryc; if (s->set_barycentrics) { baryc = nir_load_barycentric_pixel(b, 32, .interp_mode = INTERP_MODE_SMOOTH); /* Since point interpolation mostly doesn't care about which barycentrics * are used, use any that are used by the shader. This is an optimization * for hw that is faster if only one set of barycentrics is used. */ if (s->found_baryc) { nir_intrinsic_instr *baryc_intr = nir_instr_as_intrinsic(baryc->parent_instr); /* Overwrite the intrinsic we just created. */ baryc_intr->intrinsic = s->found_baryc->intrinsic; nir_intrinsic_set_interp_mode(baryc_intr, nir_intrinsic_interp_mode(s->found_baryc)); } } else { baryc = nir_undef(b, 2, 32); } nir_def *coord = nir_load_point_coord_maybe_flipped(b, baryc); /* point_size = 1.0 / dFdx(gl_PointCoord.x); */ nir_def *point_size = nir_frcp(b, nir_ddx(b, nir_channel(b, coord, 0))); /* radius = point_size * 0.5 */ nir_def *radius = nir_fmul_imm(b, point_size, 0.5); /** * Compute the distance of point from centre * distance = √ (x - 0.5)^2 + (y - 0.5)^2 */ nir_def *distance = nir_fast_distance(b, coord, nir_imm_vec2(b, 0.5, 0.5)); distance = nir_fmul(b, distance, point_size); /* alpha = min(max(radius - distance, 0.0), 1.0) */ nir_def *coverage = nir_fsat(b, nir_fsub(b, radius, distance)); /* Discard fragments that are not covered by the point */ nir_discard_if(b, nir_feq_imm(b, coverage, 0.0f)); /* Write out the fragment color*vec4(1, 1, 1, coverage)*/ nir_def *one = nir_imm_float(b, 1.0f); nir_def *new_val = nir_fmul(b, nir_vec4(b, one, one, one, coverage), intr->src[out_src_idx].ssa); nir_src_rewrite(&intr->src[out_src_idx], new_val); return true; } bool nir_lower_point_smooth(nir_shader *shader, bool set_barycentrics) { assert(shader->info.stage == MESA_SHADER_FRAGMENT); nir_function_impl *impl = nir_shader_get_entrypoint(shader); lower_point_smooth_state state = { .set_barycentrics = set_barycentrics, .found_baryc = set_barycentrics ? find_any_used_barycentrics(impl) : NULL, }; return nir_shader_intrinsics_pass(shader, lower_point_smooth, nir_metadata_loop_analysis | nir_metadata_block_index | nir_metadata_dominance, &state); }