/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir.h" #include "nir_builder.h" #include "nir_deref.h" #include "util/u_math.h" static void read_const_values(nir_const_value *dst, const void *src, unsigned num_components, unsigned bit_size) { memset(dst, 0, num_components * sizeof(*dst)); switch (bit_size) { case 1: /* Booleans are special-cased to be 32-bit */ assert(((uintptr_t)src & 0x3) == 0); for (unsigned i = 0; i < num_components; i++) dst[i].b = ((int32_t *)src)[i] != 0; break; case 8: for (unsigned i = 0; i < num_components; i++) dst[i].u8 = ((int8_t *)src)[i]; break; case 16: assert(((uintptr_t)src & 0x1) == 0); for (unsigned i = 0; i < num_components; i++) dst[i].u16 = ((int16_t *)src)[i]; break; case 32: assert(((uintptr_t)src & 0x3) == 0); for (unsigned i = 0; i < num_components; i++) dst[i].u32 = ((int32_t *)src)[i]; break; case 64: assert(((uintptr_t)src & 0x7) == 0); for (unsigned i = 0; i < num_components; i++) dst[i].u64 = ((int64_t *)src)[i]; break; default: unreachable("Invalid bit size"); } } static void write_const_values(void *dst, const nir_const_value *src, nir_component_mask_t write_mask, unsigned bit_size) { switch (bit_size) { case 1: /* Booleans are special-cased to be 32-bit */ assert(((uintptr_t)dst & 0x3) == 0); u_foreach_bit(i, write_mask) ((int32_t *)dst)[i] = -(int)src[i].b; break; case 8: u_foreach_bit(i, write_mask) ((int8_t *)dst)[i] = src[i].u8; break; case 16: assert(((uintptr_t)dst & 0x1) == 0); u_foreach_bit(i, write_mask) ((int16_t *)dst)[i] = src[i].u16; break; case 32: assert(((uintptr_t)dst & 0x3) == 0); u_foreach_bit(i, write_mask) ((int32_t *)dst)[i] = src[i].u32; break; case 64: assert(((uintptr_t)dst & 0x7) == 0); u_foreach_bit(i, write_mask) ((int64_t *)dst)[i] = src[i].u64; break; default: unreachable("Invalid bit size"); } } struct small_constant { uint64_t data; uint32_t bit_size; bool is_float; uint32_t bit_stride; }; struct var_info { nir_variable *var; bool is_constant; bool is_small; bool found_read; bool duplicate; /* Block that has all the variable stores. All the blocks with reads * should be dominated by this block. */ nir_block *block; /* If is_constant, hold the collected constant data for this var. */ uint32_t constant_data_size; void *constant_data; struct small_constant small_constant; }; static int var_info_cmp(const void *_a, const void *_b) { const struct var_info *a = _a; const struct var_info *b = _b; uint32_t a_size = a->constant_data_size; uint32_t b_size = b->constant_data_size; if (a->is_constant != b->is_constant) { return (int)a->is_constant - (int)b->is_constant; } else if (a_size < b_size) { return -1; } else if (a_size > b_size) { return 1; } else if (a_size == 0) { /* Don't call memcmp with invalid pointers. */ return 0; } else { return memcmp(a->constant_data, b->constant_data, a_size); } } static nir_def * build_constant_load(nir_builder *b, nir_deref_instr *deref, glsl_type_size_align_func size_align) { nir_variable *var = nir_deref_instr_get_variable(deref); const unsigned bit_size = glsl_get_bit_size(deref->type); const unsigned num_components = glsl_get_vector_elements(deref->type); UNUSED unsigned var_size, var_align; size_align(var->type, &var_size, &var_align); assert(var->data.location % var_align == 0); UNUSED unsigned deref_size, deref_align; size_align(deref->type, &deref_size, &deref_align); nir_def *src = nir_build_deref_offset(b, deref, size_align); nir_def *load = nir_load_constant(b, num_components, bit_size, src, .base = var->data.location, .range = var_size, .align_mul = deref_align, .align_offset = 0); if (load->bit_size < 8) { /* Booleans are special-cased to be 32-bit */ assert(glsl_type_is_boolean(deref->type)); assert(deref_size == num_components * 4); load->bit_size = 32; return nir_b2b1(b, load); } else { assert(deref_size == num_components * bit_size / 8); return load; } } static void handle_constant_store(void *mem_ctx, struct var_info *info, nir_deref_instr *deref, nir_const_value *val, nir_component_mask_t write_mask, glsl_type_size_align_func size_align) { assert(!nir_deref_instr_has_indirect(deref)); const unsigned bit_size = glsl_get_bit_size(deref->type); const unsigned num_components = glsl_get_vector_elements(deref->type); if (info->constant_data_size == 0) { unsigned var_size, var_align; size_align(info->var->type, &var_size, &var_align); info->constant_data_size = var_size; info->constant_data = rzalloc_size(mem_ctx, var_size); } const unsigned offset = nir_deref_instr_get_const_offset(deref, size_align); if (offset >= info->constant_data_size) return; write_const_values((char *)info->constant_data + offset, val, write_mask & nir_component_mask(num_components), bit_size); } static void get_small_constant(struct var_info *info, glsl_type_size_align_func size_align) { if (!glsl_type_is_array(info->var->type)) return; const struct glsl_type *elem_type = glsl_get_array_element(info->var->type); if (!glsl_type_is_scalar(elem_type)) return; uint32_t array_len = glsl_get_length(info->var->type); uint32_t bit_size = glsl_get_bit_size(elem_type); /* If our array is large, don't even bother */ if (array_len > 64) return; /* Skip cases that can be lowered to a bcsel ladder more efficiently. */ if (array_len <= 3) return; uint32_t elem_size, elem_align; size_align(elem_type, &elem_size, &elem_align); uint32_t stride = ALIGN_POT(elem_size, elem_align); if (stride != (bit_size == 1 ? 4 : bit_size / 8)) return; nir_const_value values[64]; read_const_values(values, info->constant_data, array_len, bit_size); bool is_float = true; if (bit_size < 16) { is_float = false; } else { for (unsigned i = 0; i < array_len; i++) { /* See if it's an easily convertible float. * TODO: Compute greatest common divisor to support non-integer floats. * TODO: Compute min value and add it to the result of * build_small_constant_load for handling negative floats. */ uint64_t u = nir_const_value_as_float(values[i], bit_size); nir_const_value fc = nir_const_value_for_float(u, bit_size); is_float &= !memcmp(&fc, &values[i], bit_size / 8); } } uint32_t used_bits = 0; for (unsigned i = 0; i < array_len; i++) { uint64_t u64_elem = is_float ? nir_const_value_as_float(values[i], bit_size) : nir_const_value_as_uint(values[i], bit_size); if (!u64_elem) continue; uint32_t elem_bits = util_logbase2_64(u64_elem) + 1; used_bits = MAX2(used_bits, elem_bits); } /* Only use power-of-two numbers of bits so we end up with a shift * instead of a multiply on our index. */ used_bits = util_next_power_of_two(used_bits); if (used_bits * array_len > 64) return; info->is_small = true; for (unsigned i = 0; i < array_len; i++) { uint64_t u64_elem = is_float ? nir_const_value_as_float(values[i], bit_size) : nir_const_value_as_uint(values[i], bit_size); info->small_constant.data |= u64_elem << (i * used_bits); } /* Limit bit_size >= 32 to avoid unnecessary conversions. */ info->small_constant.bit_size = MAX2(util_next_power_of_two(used_bits * array_len), 32); info->small_constant.is_float = is_float; info->small_constant.bit_stride = used_bits; } static nir_def * build_small_constant_load(nir_builder *b, nir_deref_instr *deref, struct var_info *info, glsl_type_size_align_func size_align) { struct small_constant *constant = &info->small_constant; nir_def *imm = nir_imm_intN_t(b, constant->data, constant->bit_size); assert(deref->deref_type == nir_deref_type_array); nir_def *index = deref->arr.index.ssa; nir_def *shift = nir_imul_imm(b, index, constant->bit_stride); nir_def *ret = nir_ushr(b, imm, nir_u2u32(b, shift)); ret = nir_iand_imm(b, ret, BITFIELD64_MASK(constant->bit_stride)); const unsigned bit_size = glsl_get_bit_size(deref->type); if (bit_size < 8) { /* Booleans are special-cased to be 32-bit */ assert(glsl_type_is_boolean(deref->type)); ret = nir_ine_imm(b, ret, 0); } else { if (constant->is_float) ret = nir_u2fN(b, ret, bit_size); else if (bit_size != constant->bit_size) ret = nir_u2uN(b, ret, bit_size); } return ret; } /** Lower large constant variables to shader constant data * * This pass looks for large (type_size(var->type) > threshold) variables * which are statically constant and moves them into shader constant data. * This is especially useful when large tables are baked into the shader * source code because they can be moved into a UBO by the driver to reduce * register pressure and make indirect access cheaper. */ bool nir_opt_large_constants(nir_shader *shader, glsl_type_size_align_func size_align, unsigned threshold) { /* Default to a natural alignment if none is provided */ if (size_align == NULL) size_align = glsl_get_natural_size_align_bytes; /* This only works with a single entrypoint */ nir_function_impl *impl = nir_shader_get_entrypoint(shader); unsigned num_locals = nir_function_impl_index_vars(impl); if (num_locals == 0) { nir_shader_preserve_all_metadata(shader); return false; } struct var_info *var_infos = ralloc_array(NULL, struct var_info, num_locals); nir_foreach_function_temp_variable(var, impl) { var_infos[var->index] = (struct var_info){ .var = var, .is_constant = true, .found_read = false, }; } nir_metadata_require(impl, nir_metadata_dominance); /* First, walk through the shader and figure out what variables we can * lower to the constant blob. */ nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type == nir_instr_type_deref) { /* If we ever see a complex use of a deref_var, we have to assume * that variable is non-constant because we can't guarantee we * will find all of the writers of that variable. */ nir_deref_instr *deref = nir_instr_as_deref(instr); if (deref->deref_type == nir_deref_type_var && deref->var->data.mode == nir_var_function_temp && nir_deref_instr_has_complex_use(deref, 0)) var_infos[deref->var->index].is_constant = false; continue; } if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); bool src_is_const = false; nir_deref_instr *src_deref = NULL, *dst_deref = NULL; nir_component_mask_t write_mask = 0; switch (intrin->intrinsic) { case nir_intrinsic_store_deref: dst_deref = nir_src_as_deref(intrin->src[0]); src_is_const = nir_src_is_const(intrin->src[1]); write_mask = nir_intrinsic_write_mask(intrin); break; case nir_intrinsic_load_deref: src_deref = nir_src_as_deref(intrin->src[0]); break; case nir_intrinsic_copy_deref: assert(!"Lowering of copy_deref with large constants is prohibited"); break; default: continue; } if (dst_deref && nir_deref_mode_must_be(dst_deref, nir_var_function_temp)) { nir_variable *var = nir_deref_instr_get_variable(dst_deref); if (var == NULL) continue; assert(var->data.mode == nir_var_function_temp); struct var_info *info = &var_infos[var->index]; if (!info->is_constant) continue; if (!info->block) info->block = block; /* We only consider variables constant if they only have constant * stores, all the stores come before any reads, and all stores * come from the same block. We also can't handle indirect stores. */ if (!src_is_const || info->found_read || block != info->block || nir_deref_instr_has_indirect(dst_deref)) { info->is_constant = false; } else { nir_const_value *val = nir_src_as_const_value(intrin->src[1]); handle_constant_store(var_infos, info, dst_deref, val, write_mask, size_align); } } if (src_deref && nir_deref_mode_must_be(src_deref, nir_var_function_temp)) { nir_variable *var = nir_deref_instr_get_variable(src_deref); if (var == NULL) continue; assert(var->data.mode == nir_var_function_temp); /* We only consider variables constant if all the reads are * dominated by the block that writes to it. */ struct var_info *info = &var_infos[var->index]; if (!info->is_constant) continue; if (!info->block || !nir_block_dominates(info->block, block)) info->is_constant = false; info->found_read = true; } } } bool has_constant = false; /* Allocate constant data space for each variable that just has constant * data. We sort them by size and content so we can easily find * duplicates. */ const unsigned old_constant_data_size = shader->constant_data_size; qsort(var_infos, num_locals, sizeof(struct var_info), var_info_cmp); for (int i = 0; i < num_locals; i++) { struct var_info *info = &var_infos[i]; /* Fix up indices after we sorted. */ info->var->index = i; if (!info->is_constant) continue; get_small_constant(info, size_align); unsigned var_size, var_align; size_align(info->var->type, &var_size, &var_align); if ((var_size <= threshold && !info->is_small) || !info->found_read) { /* Don't bother lowering small stuff or data that's never read */ info->is_constant = false; continue; } if (i > 0 && var_info_cmp(info, &var_infos[i - 1]) == 0) { info->var->data.location = var_infos[i - 1].var->data.location; info->duplicate = true; } else { info->var->data.location = ALIGN_POT(shader->constant_data_size, var_align); shader->constant_data_size = info->var->data.location + var_size; } has_constant |= info->is_constant; } if (!has_constant) { nir_shader_preserve_all_metadata(shader); ralloc_free(var_infos); return false; } if (shader->constant_data_size != old_constant_data_size) { assert(shader->constant_data_size > old_constant_data_size); shader->constant_data = rerzalloc_size(shader, shader->constant_data, old_constant_data_size, shader->constant_data_size); for (int i = 0; i < num_locals; i++) { struct var_info *info = &var_infos[i]; if (!info->duplicate && info->is_constant) { memcpy((char *)shader->constant_data + info->var->data.location, info->constant_data, info->constant_data_size); } } } nir_builder b = nir_builder_create(impl); nir_foreach_block(block, impl) { nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_deref: { nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); if (!nir_deref_mode_is(deref, nir_var_function_temp)) continue; nir_variable *var = nir_deref_instr_get_variable(deref); if (var == NULL) continue; struct var_info *info = &var_infos[var->index]; if (info->is_small) { b.cursor = nir_after_instr(&intrin->instr); nir_def *val = build_small_constant_load(&b, deref, info, size_align); nir_def_replace(&intrin->def, val); nir_deref_instr_remove_if_unused(deref); } else if (info->is_constant) { b.cursor = nir_after_instr(&intrin->instr); nir_def *val = build_constant_load(&b, deref, size_align); nir_def_replace(&intrin->def, val); nir_deref_instr_remove_if_unused(deref); } break; } case nir_intrinsic_store_deref: { nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]); if (!nir_deref_mode_is(deref, nir_var_function_temp)) continue; nir_variable *var = nir_deref_instr_get_variable(deref); if (var == NULL) continue; struct var_info *info = &var_infos[var->index]; if (info->is_constant) { nir_instr_remove(&intrin->instr); nir_deref_instr_remove_if_unused(deref); } break; } case nir_intrinsic_copy_deref: default: continue; } } } /* Clean up the now unused variables */ for (int i = 0; i < num_locals; i++) { struct var_info *info = &var_infos[i]; if (info->is_constant) exec_node_remove(&info->var->node); } ralloc_free(var_infos); nir_metadata_preserve(impl, nir_metadata_control_flow); return true; }