/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file * * This file supports generating code from the FS LIR to the actual * native instructions. */ #include "brw_eu.h" #include "brw_disasm_info.h" #include "brw_fs.h" #include "brw_generator.h" #include "brw_cfg.h" #include "dev/intel_debug.h" #include "util/mesa-sha1.h" #include "util/half_float.h" static uint32_t brw_math_function(enum opcode op) { switch (op) { case SHADER_OPCODE_RCP: return BRW_MATH_FUNCTION_INV; case SHADER_OPCODE_RSQ: return BRW_MATH_FUNCTION_RSQ; case SHADER_OPCODE_SQRT: return BRW_MATH_FUNCTION_SQRT; case SHADER_OPCODE_EXP2: return BRW_MATH_FUNCTION_EXP; case SHADER_OPCODE_LOG2: return BRW_MATH_FUNCTION_LOG; case SHADER_OPCODE_POW: return BRW_MATH_FUNCTION_POW; case SHADER_OPCODE_SIN: return BRW_MATH_FUNCTION_SIN; case SHADER_OPCODE_COS: return BRW_MATH_FUNCTION_COS; case SHADER_OPCODE_INT_QUOTIENT: return BRW_MATH_FUNCTION_INT_DIV_QUOTIENT; case SHADER_OPCODE_INT_REMAINDER: return BRW_MATH_FUNCTION_INT_DIV_REMAINDER; default: unreachable("not reached: unknown math function"); } } static struct brw_reg normalize_brw_reg_for_encoding(brw_reg *reg) { struct brw_reg brw_reg; switch (reg->file) { case ADDRESS: case ARF: case FIXED_GRF: case IMM: assert(reg->offset == 0); brw_reg = *reg; break; case BAD_FILE: /* Probably unused. */ brw_reg = brw_null_reg(); break; case VGRF: case ATTR: case UNIFORM: unreachable("not reached"); } return brw_reg; } brw_generator::brw_generator(const struct brw_compiler *compiler, const struct brw_compile_params *params, struct brw_stage_prog_data *prog_data, gl_shader_stage stage) : compiler(compiler), params(params), devinfo(compiler->devinfo), prog_data(prog_data), dispatch_width(0), debug_flag(false), shader_name(NULL), stage(stage), mem_ctx(params->mem_ctx) { p = rzalloc(mem_ctx, struct brw_codegen); brw_init_codegen(&compiler->isa, p, mem_ctx); } brw_generator::~brw_generator() { } class ip_record : public exec_node { public: DECLARE_RALLOC_CXX_OPERATORS(ip_record) ip_record(int ip) { this->ip = ip; } int ip; }; bool brw_generator::patch_halt_jumps() { if (this->discard_halt_patches.is_empty()) return false; int scale = brw_jump_scale(p->devinfo); /* There is a somewhat strange undocumented requirement of using * HALT, according to the simulator. If some channel has HALTed to * a particular UIP, then by the end of the program, every channel * must have HALTed to that UIP. Furthermore, the tracking is a * stack, so you can't do the final halt of a UIP after starting * halting to a new UIP. * * Symptoms of not emitting this instruction on actual hardware * included GPU hangs and sparkly rendering on the piglit discard * tests. */ brw_eu_inst *last_halt = brw_HALT(p); brw_eu_inst_set_uip(p->devinfo, last_halt, 1 * scale); brw_eu_inst_set_jip(p->devinfo, last_halt, 1 * scale); int ip = p->nr_insn; foreach_in_list(ip_record, patch_ip, &discard_halt_patches) { brw_eu_inst *patch = &p->store[patch_ip->ip]; assert(brw_eu_inst_opcode(p->isa, patch) == BRW_OPCODE_HALT); /* HALT takes a half-instruction distance from the pre-incremented IP. */ brw_eu_inst_set_uip(p->devinfo, patch, (ip - patch_ip->ip) * scale); } this->discard_halt_patches.make_empty(); return true; } void brw_generator::generate_send(fs_inst *inst, struct brw_reg dst, struct brw_reg desc, struct brw_reg ex_desc, struct brw_reg payload, struct brw_reg payload2) { if (ex_desc.file == IMM && ex_desc.ud == 0) { brw_send_indirect_message(p, inst->sfid, dst, payload, desc, inst->eot); if (inst->check_tdr) brw_eu_inst_set_opcode(p->isa, brw_last_inst, BRW_OPCODE_SENDC); } else { /* If we have any sort of extended descriptor, then we need SENDS. This * also covers the dual-payload case because ex_mlen goes in ex_desc. */ brw_send_indirect_split_message(p, inst->sfid, dst, payload, payload2, desc, ex_desc, inst->ex_mlen, inst->send_ex_bso, inst->eot); if (inst->check_tdr) brw_eu_inst_set_opcode(p->isa, brw_last_inst, devinfo->ver >= 12 ? BRW_OPCODE_SENDC : BRW_OPCODE_SENDSC); } } void brw_generator::generate_mov_indirect(fs_inst *inst, struct brw_reg dst, struct brw_reg reg, struct brw_reg indirect_byte_offset) { assert(indirect_byte_offset.type == BRW_TYPE_UD); assert(indirect_byte_offset.file == FIXED_GRF); assert(!reg.abs && !reg.negate); /* Gen12.5 adds the following region restriction: * * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float * and Quad-Word data must not be used." * * We require the source and destination types to match so stomp to an * unsigned integer type. */ assert(reg.type == dst.type); reg.type = dst.type = brw_type_with_size(BRW_TYPE_UD, brw_type_size_bits(reg.type)); unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr; if (indirect_byte_offset.file == IMM) { imm_byte_offset += indirect_byte_offset.ud; reg.nr = imm_byte_offset / REG_SIZE; reg.subnr = imm_byte_offset % REG_SIZE; if (brw_type_size_bytes(reg.type) > 4 && !devinfo->has_64bit_int) { brw_MOV(p, subscript(dst, BRW_TYPE_D, 0), subscript(reg, BRW_TYPE_D, 0)); brw_set_default_swsb(p, tgl_swsb_null()); brw_MOV(p, subscript(dst, BRW_TYPE_D, 1), subscript(reg, BRW_TYPE_D, 1)); } else { brw_MOV(p, dst, reg); } } else { /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ struct brw_reg addr = vec8(brw_address_reg(0)); /* Whether we can use destination dependency control without running the * risk of a hang if an instruction gets shot down. */ const bool use_dep_ctrl = !inst->predicate && inst->exec_size == dispatch_width; brw_eu_inst *insn; /* The destination stride of an instruction (in bytes) must be greater * than or equal to the size of the rest of the instruction. Since the * address register is of type UW, we can't use a D-type instruction. * In order to get around this, re retype to UW and use a stride. */ indirect_byte_offset = retype(spread(indirect_byte_offset, 2), BRW_TYPE_UW); /* There are a number of reasons why we don't use the base offset here. * One reason is that the field is only 9 bits which means we can only * use it to access the first 16 GRFs. Also, from the Haswell PRM * section "Register Region Restrictions": * * "The lower bits of the AddressImmediate must not overflow to * change the register address. The lower 5 bits of Address * Immediate when added to lower 5 bits of address register gives * the sub-register offset. The upper bits of Address Immediate * when added to upper bits of address register gives the register * address. Any overflow from sub-register offset is dropped." * * Since the indirect may cause us to cross a register boundary, this * makes the base offset almost useless. We could try and do something * clever where we use a actual base offset if base_offset % 32 == 0 but * that would mean we were generating different code depending on the * base offset. Instead, for the sake of consistency, we'll just do the * add ourselves. This restriction is only listed in the Haswell PRM * but empirical testing indicates that it applies on all older * generations and is lifted on Broadwell. * * In the end, while base_offset is nice to look at in the generated * code, using it saves us 0 instructions and would require quite a bit * of case-by-case work. It's just not worth it. * * Due to a hardware bug some platforms (particularly Gfx11+) seem to * require the address components of all channels to be valid whether or * not they're active, which causes issues if we use VxH addressing * under non-uniform control-flow. We can easily work around that by * initializing the whole address register with a pipelined NoMask MOV * instruction. */ insn = brw_MOV(p, addr, brw_imm_uw(imm_byte_offset)); brw_eu_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE); brw_eu_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE); if (devinfo->ver >= 12) brw_set_default_swsb(p, tgl_swsb_null()); else brw_eu_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl); insn = brw_ADD(p, addr, indirect_byte_offset, brw_imm_uw(imm_byte_offset)); if (devinfo->ver >= 12) brw_set_default_swsb(p, tgl_swsb_regdist(1)); else brw_eu_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl); if (brw_type_size_bytes(reg.type) > 4 && (intel_device_info_is_9lp(devinfo) || !devinfo->has_64bit_int)) { /* From the Cherryview PRM Vol 7. "Register Region Restrictions": * * "When source or destination datatype is 64b or operation is * integer DWord multiply, indirect addressing must not be used." * * We may also not support Q/UQ types. * * To work around both of these, we do two integer MOVs instead * of one 64-bit MOV. Because no double value should ever cross * a register boundary, it's safe to use the immediate offset in * the indirect here to handle adding 4 bytes to the offset and * avoid the extra ADD to the register file. */ brw_MOV(p, subscript(dst, BRW_TYPE_D, 0), retype(brw_VxH_indirect(0, 0), BRW_TYPE_D)); brw_set_default_swsb(p, tgl_swsb_null()); brw_MOV(p, subscript(dst, BRW_TYPE_D, 1), retype(brw_VxH_indirect(0, 4), BRW_TYPE_D)); } else { struct brw_reg ind_src = brw_VxH_indirect(0, 0); brw_MOV(p, dst, retype(ind_src, reg.type)); } } } void brw_generator::generate_shuffle(fs_inst *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg idx) { assert(src.file == FIXED_GRF); assert(!src.abs && !src.negate); /* Ivy bridge has some strange behavior that makes this a real pain to * implement for 64-bit values so we just don't bother. */ assert(devinfo->has_64bit_float || brw_type_size_bytes(src.type) <= 4); /* Gen12.5 adds the following region restriction: * * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float * and Quad-Word data must not be used." * * We require the source and destination types to match so stomp to an * unsigned integer type. */ assert(src.type == dst.type); src.type = dst.type = brw_type_with_size(BRW_TYPE_UD, brw_type_size_bits(src.type)); /* Because we're using the address register, we're limited to 16-wide * by the address register file and 8-wide for 64-bit types. We could try * and make this instruction splittable higher up in the compiler but that * gets weird because it reads all of the channels regardless of execution * size. It's easier just to split it here. */ unsigned lower_width = MIN2(16, inst->exec_size); if (devinfo->ver < 20 && (element_sz(src) > 4 || element_sz(dst) > 4)) { lower_width = 8; } brw_set_default_exec_size(p, cvt(lower_width) - 1); for (unsigned group = 0; group < inst->exec_size; group += lower_width) { brw_set_default_group(p, group); if ((src.vstride == 0 && src.hstride == 0) || idx.file == IMM) { /* Trivial, the source is already uniform or the index is a constant. * We will typically not get here if the optimizer is doing its job, * but asserting would be mean. */ const unsigned i = idx.file == IMM ? idx.ud : 0; struct brw_reg group_src = stride(suboffset(src, i), 0, 1, 0); struct brw_reg group_dst = suboffset(dst, group << (dst.hstride - 1)); brw_MOV(p, group_dst, group_src); } else { /* We use VxH indirect addressing, clobbering a0.0 through a0.7. */ struct brw_reg addr = vec8(brw_address_reg(0)); struct brw_reg group_idx = suboffset(idx, group); if (lower_width == 8 && group_idx.width == BRW_WIDTH_16) { /* Things get grumpy if the register is too wide. */ group_idx.width--; group_idx.vstride--; } assert(brw_type_size_bytes(group_idx.type) <= 4); if (brw_type_size_bytes(group_idx.type) == 4) { /* The destination stride of an instruction (in bytes) must be * greater than or equal to the size of the rest of the * instruction. Since the address register is of type UW, we * can't use a D-type instruction. In order to get around this, * re retype to UW and use a stride. */ group_idx = retype(spread(group_idx, 2), BRW_TYPE_W); } uint32_t src_start_offset = src.nr * REG_SIZE + src.subnr; /* From the Haswell PRM: * * "When a sequence of NoDDChk and NoDDClr are used, the last * instruction that completes the scoreboard clear must have a * non-zero execution mask. This means, if any kind of predication * can change the execution mask or channel enable of the last * instruction, the optimization must be avoided. This is to * avoid instructions being shot down the pipeline when no writes * are required." * * Whenever predication is enabled or the instructions being emitted * aren't the full width, it's possible that it will be run with zero * channels enabled so we can't use dependency control without * running the risk of a hang if an instruction gets shot down. */ const bool use_dep_ctrl = !inst->predicate && lower_width == dispatch_width; brw_eu_inst *insn; /* Due to a hardware bug some platforms (particularly Gfx11+) seem * to require the address components of all channels to be valid * whether or not they're active, which causes issues if we use VxH * addressing under non-uniform control-flow. We can easily work * around that by initializing the whole address register with a * pipelined NoMask MOV instruction. */ insn = brw_MOV(p, addr, brw_imm_uw(src_start_offset)); brw_eu_inst_set_mask_control(devinfo, insn, BRW_MASK_DISABLE); brw_eu_inst_set_pred_control(devinfo, insn, BRW_PREDICATE_NONE); if (devinfo->ver >= 12) brw_set_default_swsb(p, tgl_swsb_null()); else brw_eu_inst_set_no_dd_clear(devinfo, insn, use_dep_ctrl); /* Take into account the component size and horizontal stride. */ assert(src.vstride == src.hstride + src.width); insn = brw_SHL(p, addr, group_idx, brw_imm_uw(util_logbase2(brw_type_size_bytes(src.type)) + src.hstride - 1)); if (devinfo->ver >= 12) brw_set_default_swsb(p, tgl_swsb_regdist(1)); else brw_eu_inst_set_no_dd_check(devinfo, insn, use_dep_ctrl); /* Add on the register start offset */ brw_ADD(p, addr, addr, brw_imm_uw(src_start_offset)); brw_MOV(p, suboffset(dst, group << (dst.hstride - 1)), retype(brw_VxH_indirect(0, 0), src.type)); } brw_set_default_swsb(p, tgl_swsb_null()); } } void brw_generator::generate_quad_swizzle(const fs_inst *inst, struct brw_reg dst, struct brw_reg src, unsigned swiz) { /* Requires a quad. */ assert(inst->exec_size >= 4); if (src.file == IMM || has_scalar_region(src)) { /* The value is uniform across all channels */ brw_MOV(p, dst, src); } else if (devinfo->ver < 11 && brw_type_size_bytes(src.type) == 4) { /* This only works on 8-wide 32-bit values */ assert(inst->exec_size == 8); assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); assert(src.vstride == src.width + 1); brw_set_default_access_mode(p, BRW_ALIGN_16); struct brw_reg swiz_src = stride(src, 4, 4, 1); swiz_src.swizzle = swiz; brw_MOV(p, dst, swiz_src); } else { assert(src.hstride == BRW_HORIZONTAL_STRIDE_1); assert(src.vstride == src.width + 1); const struct brw_reg src_0 = suboffset(src, BRW_GET_SWZ(swiz, 0)); switch (swiz) { case BRW_SWIZZLE_XXXX: case BRW_SWIZZLE_YYYY: case BRW_SWIZZLE_ZZZZ: case BRW_SWIZZLE_WWWW: brw_MOV(p, dst, stride(src_0, 4, 4, 0)); break; case BRW_SWIZZLE_XXZZ: case BRW_SWIZZLE_YYWW: brw_MOV(p, dst, stride(src_0, 2, 2, 0)); break; case BRW_SWIZZLE_XYXY: case BRW_SWIZZLE_ZWZW: assert(inst->exec_size == 4); brw_MOV(p, dst, stride(src_0, 0, 2, 1)); break; default: assert(inst->force_writemask_all); brw_set_default_exec_size(p, cvt(inst->exec_size / 4) - 1); for (unsigned c = 0; c < 4; c++) { brw_eu_inst *insn = brw_MOV( p, stride(suboffset(dst, c), 4 * inst->dst.stride, 1, 4 * inst->dst.stride), stride(suboffset(src, BRW_GET_SWZ(swiz, c)), 4, 1, 0)); if (devinfo->ver < 12) { brw_eu_inst_set_no_dd_clear(devinfo, insn, c < 3); brw_eu_inst_set_no_dd_check(devinfo, insn, c > 0); } brw_set_default_swsb(p, tgl_swsb_null()); } break; } } } void brw_generator::generate_barrier(fs_inst *, struct brw_reg src) { brw_barrier(p, src); if (devinfo->ver >= 12) { brw_set_default_swsb(p, tgl_swsb_null()); brw_SYNC(p, TGL_SYNC_BAR); } else { brw_WAIT(p); } } /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input * looking like: * * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br * * Ideally, we want to produce: * * DDX DDY * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl) * (ss0.tr - ss0.tl) (ss0.tr - ss0.br) * (ss0.br - ss0.bl) (ss0.tl - ss0.bl) * (ss0.br - ss0.bl) (ss0.tr - ss0.br) * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl) * (ss1.tr - ss1.tl) (ss1.tr - ss1.br) * (ss1.br - ss1.bl) (ss1.tl - ss1.bl) * (ss1.br - ss1.bl) (ss1.tr - ss1.br) * * and add another set of two more subspans if in 16-pixel dispatch mode. * * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result * for each pair, and vertstride = 2 jumps us 2 elements after processing a * pair. But the ideal approximation may impose a huge performance cost on * sample_d. On at least Haswell, sample_d instruction does some * optimizations if the same LOD is used for all pixels in the subspan. * * For DDY, we need to use ALIGN16 mode since it's capable of doing the * appropriate swizzling. */ void brw_generator::generate_ddx(const fs_inst *inst, struct brw_reg dst, struct brw_reg src) { unsigned vstride, width; if (inst->opcode == FS_OPCODE_DDX_FINE) { /* produce accurate derivatives */ vstride = BRW_VERTICAL_STRIDE_2; width = BRW_WIDTH_2; } else { /* replicate the derivative at the top-left pixel to other pixels */ vstride = BRW_VERTICAL_STRIDE_4; width = BRW_WIDTH_4; } struct brw_reg src0 = byte_offset(src, brw_type_size_bytes(src.type));; struct brw_reg src1 = src; src0.vstride = vstride; src0.width = width; src0.hstride = BRW_HORIZONTAL_STRIDE_0; src1.vstride = vstride; src1.width = width; src1.hstride = BRW_HORIZONTAL_STRIDE_0; brw_ADD(p, dst, src0, negate(src1)); } /* The negate_value boolean is used to negate the derivative computation for * FBOs, since they place the origin at the upper left instead of the lower * left. */ void brw_generator::generate_ddy(const fs_inst *inst, struct brw_reg dst, struct brw_reg src) { const uint32_t type_size = brw_type_size_bytes(src.type); if (inst->opcode == FS_OPCODE_DDY_FINE) { /* produce accurate derivatives. * * From the Broadwell PRM, Volume 7 (3D-Media-GPGPU) * "Register Region Restrictions", Section "1. Special Restrictions": * * "In Align16 mode, the channel selects and channel enables apply to * a pair of half-floats, because these parameters are defined for * DWord elements ONLY. This is applicable when both source and * destination are half-floats." * * So for half-float operations we use the Gfx11+ Align1 path. CHV * inherits its FP16 hardware from SKL, so it is not affected. */ if (devinfo->ver >= 11) { src = stride(src, 0, 2, 1); brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_4); for (uint32_t g = 0; g < inst->exec_size; g += 4) { brw_set_default_group(p, inst->group + g); brw_ADD(p, byte_offset(dst, g * type_size), negate(byte_offset(src, g * type_size)), byte_offset(src, (g + 2) * type_size)); brw_set_default_swsb(p, tgl_swsb_null()); } brw_pop_insn_state(p); } else { struct brw_reg src0 = stride(src, 4, 4, 1); struct brw_reg src1 = stride(src, 4, 4, 1); src0.swizzle = BRW_SWIZZLE_XYXY; src1.swizzle = BRW_SWIZZLE_ZWZW; brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_16); brw_ADD(p, dst, negate(src0), src1); brw_pop_insn_state(p); } } else { /* replicate the derivative at the top-left pixel to other pixels */ struct brw_reg src0 = byte_offset(stride(src, 4, 4, 0), 0 * type_size); struct brw_reg src1 = byte_offset(stride(src, 4, 4, 0), 2 * type_size); brw_ADD(p, dst, negate(src0), src1); } } void brw_generator::generate_halt(fs_inst *) { /* This HALT will be patched up at FB write time to point UIP at the end of * the program, and at brw_uip_jip() JIP will be set to the end of the * current block (or the program). */ this->discard_halt_patches.push_tail(new(mem_ctx) ip_record(p->nr_insn)); brw_HALT(p); } /* The A32 messages take a buffer base address in header.5:[31:0] (See * MH1_A32_PSM for typed messages or MH_A32_GO for byte/dword scattered * and OWord block messages in the SKL PRM Vol. 2d for more details.) * Unfortunately, there are a number of subtle differences: * * For the block read/write messages: * * - We always stomp header.2 to fill in the actual scratch address (in * units of OWORDs) so we don't care what's in there. * * - They rely on per-thread scratch space value in header.3[3:0] to do * bounds checking so that needs to be valid. The upper bits of * header.3 are ignored, though, so we can copy all of g0.3. * * - They ignore header.5[9:0] and assumes the address is 1KB aligned. * * * For the byte/dword scattered read/write messages: * * - We want header.2 to be zero because that gets added to the per-channel * offset in the non-header portion of the message. * * - Contrary to what the docs claim, they don't do any bounds checking so * the value of header.3[3:0] doesn't matter. * * - They consider all of header.5 for the base address and header.5[9:0] * are not ignored. This means that we can't copy g0.5 verbatim because * g0.5[9:0] contains the FFTID on most platforms. Instead, we have to * use an AND to mask off the bottom 10 bits. * * * For block messages, just copying g0 gives a valid header because all the * garbage gets ignored except for header.2 which we stomp as part of message * setup. For byte/dword scattered messages, we can just zero out the header * and copy over the bits we need from g0.5. This opcode, however, tries to * satisfy the requirements of both by starting with 0 and filling out the * information required by either set of opcodes. */ void brw_generator::generate_scratch_header(fs_inst *inst, struct brw_reg dst, struct brw_reg src) { assert(inst->exec_size == 8 && inst->force_writemask_all); assert(dst.file == FIXED_GRF); assert(src.file == FIXED_GRF); assert(src.type == BRW_TYPE_UD); dst.type = BRW_TYPE_UD; brw_eu_inst *insn = brw_MOV(p, dst, brw_imm_ud(0)); if (devinfo->ver >= 12) brw_set_default_swsb(p, tgl_swsb_null()); else brw_eu_inst_set_no_dd_clear(p->devinfo, insn, true); /* Copy the per-thread scratch space size from g0.3[3:0] */ brw_set_default_exec_size(p, BRW_EXECUTE_1); insn = brw_AND(p, suboffset(dst, 3), component(src, 3), brw_imm_ud(INTEL_MASK(3, 0))); if (devinfo->ver < 12) { brw_eu_inst_set_no_dd_clear(p->devinfo, insn, true); brw_eu_inst_set_no_dd_check(p->devinfo, insn, true); } /* Copy the scratch base address from g0.5[31:10] */ insn = brw_AND(p, suboffset(dst, 5), component(src, 5), brw_imm_ud(INTEL_MASK(31, 10))); if (devinfo->ver < 12) brw_eu_inst_set_no_dd_check(p->devinfo, insn, true); } void brw_generator::enable_debug(const char *shader_name) { debug_flag = true; this->shader_name = shader_name; } static gfx12_systolic_depth translate_systolic_depth(unsigned d) { /* Could also return (ffs(d) - 1) & 3. */ switch (d) { case 2: return BRW_SYSTOLIC_DEPTH_2; case 4: return BRW_SYSTOLIC_DEPTH_4; case 8: return BRW_SYSTOLIC_DEPTH_8; case 16: return BRW_SYSTOLIC_DEPTH_16; default: unreachable("Invalid systolic depth."); } } int brw_generator::generate_code(const cfg_t *cfg, int dispatch_width, struct brw_shader_stats shader_stats, const brw::performance &perf, struct brw_compile_stats *stats, unsigned max_polygons) { /* align to 64 byte boundary. */ brw_realign(p, 64); this->dispatch_width = dispatch_width; int start_offset = p->next_insn_offset; int loop_count = 0, send_count = 0, nop_count = 0, sync_nop_count = 0; bool is_accum_used = false; struct disasm_info *disasm_info = disasm_initialize(p->isa, cfg); enum opcode prev_opcode = BRW_OPCODE_ILLEGAL; foreach_block_and_inst (block, fs_inst, inst, cfg) { if (inst->opcode == SHADER_OPCODE_UNDEF) continue; struct brw_reg src[4], dst; unsigned int last_insn_offset = p->next_insn_offset; bool multiple_instructions_emitted = false; tgl_swsb swsb = inst->sched; /* From the Broadwell PRM, Volume 7, "3D-Media-GPGPU", in the * "Register Region Restrictions" section: for BDW, SKL: * * "A POW/FDIV operation must not be followed by an instruction * that requires two destination registers." * * The documentation is often lacking annotations for Atom parts, * and empirically this affects CHV as well. */ if (devinfo->ver <= 9 && p->nr_insn > 1 && brw_eu_inst_opcode(p->isa, brw_last_inst) == BRW_OPCODE_MATH && brw_eu_inst_math_function(devinfo, brw_last_inst) == BRW_MATH_FUNCTION_POW && inst->dst.component_size(inst->exec_size) > REG_SIZE) { brw_NOP(p); last_insn_offset = p->next_insn_offset; /* In order to avoid spurious instruction count differences when the * instruction schedule changes, keep track of the number of inserted * NOPs. */ nop_count++; } /* Wa_14010017096: * * Clear accumulator register before end of thread. */ if (inst->eot && is_accum_used && intel_needs_workaround(devinfo, 14010017096)) { brw_set_default_exec_size(p, BRW_EXECUTE_16); brw_set_default_group(p, 0); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); brw_set_default_flag_reg(p, 0, 0); brw_set_default_swsb(p, tgl_swsb_src_dep(swsb)); brw_MOV(p, brw_acc_reg(8), brw_imm_f(0.0f)); last_insn_offset = p->next_insn_offset; swsb = tgl_swsb_dst_dep(swsb, 1); } if (!is_accum_used && !inst->eot) { is_accum_used = inst->writes_accumulator_implicitly(devinfo) || inst->dst.is_accumulator(); } /* Wa_14013672992: * * Always use @1 SWSB for EOT. */ if (inst->eot && intel_needs_workaround(devinfo, 14013672992)) { if (tgl_swsb_src_dep(swsb).mode) { brw_set_default_exec_size(p, BRW_EXECUTE_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); brw_set_default_flag_reg(p, 0, 0); brw_set_default_swsb(p, tgl_swsb_src_dep(swsb)); brw_SYNC(p, TGL_SYNC_NOP); last_insn_offset = p->next_insn_offset; } swsb = tgl_swsb_dst_dep(swsb, 1); } if (unlikely(debug_flag)) disasm_annotate(disasm_info, inst, p->next_insn_offset); if (devinfo->ver >= 20 && inst->group % 8 != 0) { assert(inst->force_writemask_all); assert(!inst->predicate && !inst->conditional_mod); assert(!inst->writes_accumulator_implicitly(devinfo) && !inst->reads_accumulator_implicitly()); assert(inst->opcode != SHADER_OPCODE_SEL_EXEC); brw_set_default_group(p, 0); } else { brw_set_default_group(p, inst->group); } for (unsigned int i = 0; i < inst->sources; i++) { src[i] = normalize_brw_reg_for_encoding(&inst->src[i]); /* The accumulator result appears to get used for the * conditional modifier generation. When negating a UD * value, there is a 33rd bit generated for the sign in the * accumulator value, so now you can't check, for example, * equality with a 32-bit value. See piglit fs-op-neg-uvec4. */ assert(!inst->conditional_mod || inst->src[i].type != BRW_TYPE_UD || !inst->src[i].negate); } dst = normalize_brw_reg_for_encoding(&inst->dst); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_predicate_control(p, inst->predicate); brw_set_default_predicate_inverse(p, inst->predicate_inverse); /* On gfx7 and above, hardware automatically adds the group onto the * flag subregister number. */ const unsigned flag_subreg = inst->flag_subreg; brw_set_default_flag_reg(p, flag_subreg / 2, flag_subreg % 2); brw_set_default_saturate(p, inst->saturate); brw_set_default_mask_control(p, inst->force_writemask_all); if (devinfo->ver >= 20 && inst->writes_accumulator) { assert(inst->dst.is_accumulator() || inst->opcode == BRW_OPCODE_ADDC || inst->opcode == BRW_OPCODE_MACH || inst->opcode == BRW_OPCODE_SUBB); } else { brw_set_default_acc_write_control(p, inst->writes_accumulator); } brw_set_default_swsb(p, swsb); unsigned exec_size = inst->exec_size; brw_set_default_exec_size(p, cvt(exec_size) - 1); assert(inst->force_writemask_all || inst->exec_size >= 4); assert(inst->force_writemask_all || inst->group % inst->exec_size == 0); assert(inst->mlen <= BRW_MAX_MSG_LENGTH * reg_unit(devinfo)); switch (inst->opcode) { case BRW_OPCODE_NOP: brw_NOP(p); break; case BRW_OPCODE_SYNC: assert(src[0].file == IMM); brw_SYNC(p, tgl_sync_function(src[0].ud)); if (tgl_sync_function(src[0].ud) == TGL_SYNC_NOP) ++sync_nop_count; break; case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_AVG: brw_AVG(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_MACH(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP4A: assert(devinfo->ver >= 12); brw_DP4A(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_LINE: brw_LINE(p, dst, src[0], src[1]); break; case BRW_OPCODE_DPAS: assert(devinfo->verx10 >= 125); brw_DPAS(p, translate_systolic_depth(inst->sdepth), inst->rcount, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_MAD: if (devinfo->ver < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_MAD(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_LRP: assert(devinfo->ver <= 10); if (devinfo->ver < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_LRP(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_ADD3: assert(devinfo->verx10 >= 125); brw_ADD3(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_ROL: assert(devinfo->ver >= 11); assert(src[0].type == dst.type); brw_ROL(p, dst, src[0], src[1]); break; case BRW_OPCODE_ROR: assert(devinfo->ver >= 11); assert(src[0].type == dst.type); brw_ROR(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_CMPN: brw_CMPN(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CSEL: if (devinfo->ver < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_CSEL(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFREV: brw_BFREV(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); break; case BRW_OPCODE_FBH: brw_FBH(p, retype(dst, src[0].type), src[0]); break; case BRW_OPCODE_FBL: brw_FBL(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); break; case BRW_OPCODE_LZD: brw_LZD(p, dst, src[0]); break; case BRW_OPCODE_CBIT: brw_CBIT(p, retype(dst, BRW_TYPE_UD), retype(src[0], BRW_TYPE_UD)); break; case BRW_OPCODE_ADDC: brw_ADDC(p, dst, src[0], src[1]); break; case BRW_OPCODE_SUBB: brw_SUBB(p, dst, src[0], src[1]); break; case BRW_OPCODE_MAC: brw_MAC(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFE: if (devinfo->ver < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_BFE(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFI1: brw_BFI1(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFI2: if (devinfo->ver < 10) brw_set_default_access_mode(p, BRW_ALIGN_16); brw_BFI2(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_IF: brw_IF(p, brw_get_default_exec_size(p)); break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, brw_get_default_exec_size(p)); break; case BRW_OPCODE_BREAK: brw_BREAK(p); break; case BRW_OPCODE_CONTINUE: brw_CONT(p); break; case BRW_OPCODE_WHILE: /* On LNL and newer, if we don't put a NOP in between two consecutive * WHILE instructions we may end up with misrendering or GPU hangs. * See HSD 22020521218. */ if (devinfo->ver >= 20 && unlikely(prev_opcode == BRW_OPCODE_WHILE)) brw_NOP(p); brw_WHILE(p); loop_count++; break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); assert(inst->mlen == 0); gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], retype(brw_null_reg(), src[0].type)); break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: case SHADER_OPCODE_POW: assert(devinfo->verx10 < 125); assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); assert(inst->mlen == 0); assert(inst->opcode == SHADER_OPCODE_POW || inst->exec_size == 8); gfx6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]); break; case BRW_OPCODE_PLN: /* PLN reads: * / in SIMD16 \ * ----------------------------------- * | src1+0 | src1+1 | src1+2 | src1+3 | * |-----------------------------------| * |(x0, x1)|(y0, y1)|(x2, x3)|(y2, y3)| * ----------------------------------- */ brw_PLN(p, dst, src[0], src[1]); break; case FS_OPCODE_PIXEL_X: assert(src[0].type == BRW_TYPE_UW); assert(src[1].type == BRW_TYPE_UW); src[0].subnr = 0 * brw_type_size_bytes(src[0].type); if (src[1].file == IMM) { assert(src[1].ud == 0); brw_MOV(p, dst, stride(src[0], 8, 4, 1)); } else { /* Coarse pixel case */ brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]); } break; case FS_OPCODE_PIXEL_Y: assert(src[0].type == BRW_TYPE_UW); assert(src[1].type == BRW_TYPE_UW); src[0].subnr = 4 * brw_type_size_bytes(src[0].type); if (src[1].file == IMM) { assert(src[1].ud == 0); brw_MOV(p, dst, stride(src[0], 8, 4, 1)); } else { /* Coarse pixel case */ brw_ADD(p, dst, stride(src[0], 8, 4, 1), src[1]); } break; case SHADER_OPCODE_SEND: generate_send(inst, dst, src[0], src[1], src[2], inst->ex_mlen > 0 ? src[3] : brw_null_reg()); send_count++; break; case FS_OPCODE_DDX_COARSE: case FS_OPCODE_DDX_FINE: generate_ddx(inst, dst, src[0]); break; case FS_OPCODE_DDY_COARSE: case FS_OPCODE_DDY_FINE: generate_ddy(inst, dst, src[0]); break; case SHADER_OPCODE_SCRATCH_HEADER: generate_scratch_header(inst, dst, src[0]); break; case SHADER_OPCODE_MOV_INDIRECT: generate_mov_indirect(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_MOV_RELOC_IMM: assert(src[0].file == IMM); assert(src[1].file == IMM); brw_MOV_reloc_imm(p, dst, dst.type, src[0].ud, src[1].ud); break; case BRW_OPCODE_HALT: generate_halt(inst); break; case SHADER_OPCODE_INTERLOCK: case SHADER_OPCODE_MEMORY_FENCE: { assert(src[1].file == IMM); assert(src[2].file == IMM); const enum opcode send_op = inst->opcode == SHADER_OPCODE_INTERLOCK ? BRW_OPCODE_SENDC : BRW_OPCODE_SEND; brw_memory_fence(p, dst, src[0], send_op, brw_message_target(inst->sfid), inst->desc, /* commit_enable */ src[1].ud, /* bti */ src[2].ud); send_count++; break; } case FS_OPCODE_SCHEDULING_FENCE: if (inst->sources == 0 && swsb.regdist == 0 && swsb.mode == TGL_SBID_NULL) { if (unlikely(debug_flag)) disasm_info->use_tail = true; break; } if (devinfo->ver >= 12) { /* Use the available SWSB information to stall. A single SYNC is * sufficient since if there were multiple dependencies, the * scoreboard algorithm already injected other SYNCs before this * instruction. */ brw_SYNC(p, TGL_SYNC_NOP); } else { for (unsigned i = 0; i < inst->sources; i++) { /* Emit a MOV to force a stall until the instruction producing the * registers finishes. */ brw_MOV(p, retype(brw_null_reg(), BRW_TYPE_UW), retype(src[i], BRW_TYPE_UW)); } if (inst->sources > 1) multiple_instructions_emitted = true; } break; case SHADER_OPCODE_FIND_LIVE_CHANNEL: case SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL: case SHADER_OPCODE_LOAD_LIVE_CHANNELS: unreachable("Should be lowered by lower_find_live_channel()"); break; case FS_OPCODE_LOAD_LIVE_CHANNELS: { assert(inst->force_writemask_all && inst->group == 0); assert(inst->dst.file == BAD_FILE); brw_set_default_exec_size(p, BRW_EXECUTE_1); brw_MOV(p, retype(brw_flag_subreg(inst->flag_subreg), BRW_TYPE_UD), retype(brw_mask_reg(0), BRW_TYPE_UD)); break; } case SHADER_OPCODE_BROADCAST: assert(inst->force_writemask_all); brw_broadcast(p, dst, src[0], src[1]); break; case SHADER_OPCODE_SHUFFLE: generate_shuffle(inst, dst, src[0], src[1]); break; case SHADER_OPCODE_SEL_EXEC: assert(inst->force_writemask_all); assert(devinfo->has_64bit_float || brw_type_size_bytes(dst.type) <= 4); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, dst, src[1]); brw_set_default_mask_control(p, BRW_MASK_ENABLE); brw_set_default_swsb(p, tgl_swsb_null()); brw_MOV(p, dst, src[0]); break; case SHADER_OPCODE_QUAD_SWIZZLE: assert(src[1].file == IMM); assert(src[1].type == BRW_TYPE_UD); generate_quad_swizzle(inst, dst, src[0], src[1].ud); break; case SHADER_OPCODE_CLUSTER_BROADCAST: { assert((!intel_device_info_is_9lp(devinfo) && devinfo->has_64bit_float) || brw_type_size_bytes(src[0].type) <= 4); assert(!src[0].negate && !src[0].abs); assert(src[1].file == IMM); assert(src[1].type == BRW_TYPE_UD); assert(src[2].file == IMM); assert(src[2].type == BRW_TYPE_UD); const unsigned component = src[1].ud; const unsigned cluster_size = src[2].ud; assert(inst->src[0].file != ARF); unsigned s; if (inst->src[0].file == FIXED_GRF) { s = inst->src[0].hstride ? 1 << (inst->src[0].hstride - 1) : 0; } else { s = inst->src[0].stride; } unsigned vstride = cluster_size * s; unsigned width = cluster_size; /* The maximum exec_size is 32, but the maximum width is only 16. */ if (inst->exec_size == width) { vstride = 0; width = 1; } struct brw_reg strided = stride(suboffset(src[0], component * s), vstride, width, 0); brw_MOV(p, dst, strided); break; } case SHADER_OPCODE_HALT_TARGET: /* This is the place where the final HALT needs to be inserted if * we've emitted any discards. If not, this will emit no code. */ if (!patch_halt_jumps()) { if (unlikely(debug_flag)) { disasm_info->use_tail = true; } } break; case SHADER_OPCODE_BARRIER: generate_barrier(inst, src[0]); send_count++; break; case SHADER_OPCODE_RND_MODE: { assert(src[0].file == IMM); /* * Changes the floating point rounding mode updating the control * register field defined at cr0.0[5-6] bits. */ enum brw_rnd_mode mode = (enum brw_rnd_mode) (src[0].d << BRW_CR0_RND_MODE_SHIFT); brw_float_controls_mode(p, mode, BRW_CR0_RND_MODE_MASK); } break; case SHADER_OPCODE_FLOAT_CONTROL_MODE: assert(src[0].file == IMM); assert(src[1].file == IMM); brw_float_controls_mode(p, src[0].d, src[1].d); break; case SHADER_OPCODE_READ_ARCH_REG: if (devinfo->ver >= 12) { /* There is a SWSB restriction that requires that any time sr0 is * accessed both the instruction doing the access and the next one * have SWSB set to RegDist(1). */ if (brw_get_default_swsb(p).mode != TGL_SBID_NULL) brw_SYNC(p, TGL_SYNC_NOP); brw_set_default_swsb(p, tgl_swsb_regdist(1)); brw_MOV(p, dst, src[0]); brw_set_default_swsb(p, tgl_swsb_regdist(1)); brw_AND(p, dst, dst, brw_imm_ud(0xffffffff)); } else { brw_MOV(p, dst, src[0]); } break; default: unreachable("Unsupported opcode"); case SHADER_OPCODE_LOAD_PAYLOAD: unreachable("Should be lowered by lower_load_payload()"); } prev_opcode = inst->opcode; if (multiple_instructions_emitted) continue; if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) { assert(p->next_insn_offset == last_insn_offset + 16 || !"conditional_mod, no_dd_check, or no_dd_clear set for IR " "emitting more than 1 instruction"); brw_eu_inst *last = &p->store[last_insn_offset / 16]; if (inst->conditional_mod) brw_eu_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod); if (devinfo->ver < 12) { brw_eu_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear); brw_eu_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check); } } /* When enabled, insert sync NOP after every instruction and make sure * that current instruction depends on the previous instruction. */ if (INTEL_DEBUG(DEBUG_SWSB_STALL) && devinfo->ver >= 12) { brw_set_default_swsb(p, tgl_swsb_regdist(1)); brw_SYNC(p, TGL_SYNC_NOP); } } brw_set_uip_jip(p, start_offset); /* end of program sentinel */ disasm_new_inst_group(disasm_info, p->next_insn_offset); /* `send_count` explicitly does not include spills or fills, as we'd * like to use it as a metric for intentional memory access or other * shared function use. Otherwise, subtle changes to scheduling or * register allocation could cause it to fluctuate wildly - and that * effect is already counted in spill/fill counts. */ send_count -= shader_stats.spill_count; send_count -= shader_stats.fill_count; #ifndef NDEBUG bool validated = #else if (unlikely(debug_flag)) #endif brw_validate_instructions(&compiler->isa, p->store, start_offset, p->next_insn_offset, disasm_info); int before_size = p->next_insn_offset - start_offset; brw_compact_instructions(p, start_offset, disasm_info); int after_size = p->next_insn_offset - start_offset; bool dump_shader_bin = brw_should_dump_shader_bin(); unsigned char sha1[21]; char sha1buf[41]; if (unlikely(debug_flag || dump_shader_bin)) { _mesa_sha1_compute(p->store + start_offset / sizeof(brw_eu_inst), after_size, sha1); _mesa_sha1_format(sha1buf, sha1); } if (unlikely(dump_shader_bin)) brw_dump_shader_bin(p->store, start_offset, p->next_insn_offset, sha1buf); if (unlikely(debug_flag)) { fprintf(stderr, "Native code for %s (src_hash 0x%08x) (sha1 %s)\n" "SIMD%d shader: %d instructions. %d loops. %u cycles. " "%d:%d spills:fills, %u sends, " "scheduled with mode %s. " "Promoted %u constants. " "Non-SSA regs (after NIR): %u. " "Compacted %d to %d bytes (%.0f%%)\n", shader_name, params->source_hash, sha1buf, dispatch_width, before_size / 16 - nop_count - sync_nop_count, loop_count, perf.latency, shader_stats.spill_count, shader_stats.fill_count, send_count, shader_stats.scheduler_mode, shader_stats.promoted_constants, shader_stats.non_ssa_registers_after_nir, before_size, after_size, 100.0f * (before_size - after_size) / before_size); /* overriding the shader makes disasm_info invalid */ if (!brw_try_override_assembly(p, start_offset, sha1buf)) { dump_assembly(p->store, start_offset, p->next_insn_offset, disasm_info, perf.block_latency); } else { fprintf(stderr, "Successfully overrode shader with sha1 %s\n\n", sha1buf); } } ralloc_free(disasm_info); #ifndef NDEBUG if (!validated && !debug_flag) { fprintf(stderr, "Validation failed. Rerun with INTEL_DEBUG=shaders to get more information.\n"); } #endif assert(validated); brw_shader_debug_log(compiler, params->log_data, "%s SIMD%d shader: %d inst, %d loops, %u cycles, " "%d:%d spills:fills, %u sends, " "scheduled with mode %s, " "Promoted %u constants, " "compacted %d to %d bytes.\n", _mesa_shader_stage_to_abbrev(stage), dispatch_width, before_size / 16 - nop_count - sync_nop_count, loop_count, perf.latency, shader_stats.spill_count, shader_stats.fill_count, send_count, shader_stats.scheduler_mode, shader_stats.promoted_constants, before_size, after_size); if (stats) { stats->dispatch_width = dispatch_width; stats->max_polygons = max_polygons; stats->max_dispatch_width = dispatch_width; stats->instructions = before_size / 16 - nop_count - sync_nop_count; stats->sends = send_count; stats->loops = loop_count; stats->cycles = perf.latency; stats->spills = shader_stats.spill_count; stats->fills = shader_stats.fill_count; stats->max_live_registers = shader_stats.max_register_pressure; stats->non_ssa_registers_after_nir = shader_stats.non_ssa_registers_after_nir; } return start_offset; } void brw_generator::add_const_data(void *data, unsigned size) { assert(prog_data->const_data_size == 0); if (size > 0) { prog_data->const_data_size = size; prog_data->const_data_offset = brw_append_data(p, data, size, 32); } } void brw_generator::add_resume_sbt(unsigned num_resume_shaders, uint64_t *sbt) { assert(brw_shader_stage_is_bindless(stage)); struct brw_bs_prog_data *bs_prog_data = brw_bs_prog_data(prog_data); if (num_resume_shaders > 0) { bs_prog_data->resume_sbt_offset = brw_append_data(p, sbt, num_resume_shaders * sizeof(uint64_t), 32); for (unsigned i = 0; i < num_resume_shaders; i++) { size_t offset = bs_prog_data->resume_sbt_offset + i * sizeof(*sbt); assert(offset <= UINT32_MAX); brw_add_reloc(p, BRW_SHADER_RELOC_SHADER_START_OFFSET, BRW_SHADER_RELOC_TYPE_U32, (uint32_t)offset, (uint32_t)sbt[i]); } } } const unsigned * brw_generator::get_assembly() { prog_data->relocs = brw_get_shader_relocs(p, &prog_data->num_relocs); return brw_get_program(p, &prog_data->program_size); }