/* * Copyright © 2022 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "intel_nir.h" #include "compiler/nir/nir_builder.h" /** * Implement a peephole pass to convert integer multiplications to imul32x16. */ struct pass_data { struct hash_table *range_ht; }; static void replace_imul_instr(nir_builder *b, nir_alu_instr *imul, unsigned small_val, nir_op new_opcode) { assert(small_val == 0 || small_val == 1); b->cursor = nir_before_instr(&imul->instr); nir_alu_instr *imul_32x16 = nir_alu_instr_create(b->shader, new_opcode); nir_alu_src_copy(&imul_32x16->src[0], &imul->src[1 - small_val]); nir_alu_src_copy(&imul_32x16->src[1], &imul->src[small_val]); nir_def_init(&imul_32x16->instr, &imul_32x16->def, imul->def.num_components, 32); nir_def_rewrite_uses(&imul->def, &imul_32x16->def); nir_builder_instr_insert(b, &imul_32x16->instr); nir_instr_remove(&imul->instr); nir_instr_free(&imul->instr); } enum root_operation { non_unary = 0, integer_neg = 1 << 0, integer_abs = 1 << 1, integer_neg_abs = integer_neg | integer_abs, invalid_root = 255 }; static enum root_operation signed_integer_range_analysis(nir_shader *shader, struct hash_table *range_ht, nir_scalar scalar, int *lo, int *hi) { if (nir_scalar_is_const(scalar)) { *lo = nir_scalar_as_int(scalar); *hi = *lo; return non_unary; } if (nir_scalar_is_alu(scalar)) { switch (nir_scalar_alu_op(scalar)) { case nir_op_iabs: signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 0), lo, hi); if (*lo == INT32_MIN) { *hi = INT32_MAX; } else { const int32_t a = abs(*lo); const int32_t b = abs(*hi); *lo = MIN2(a, b); *hi = MAX2(a, b); } /* Absolute value wipes out any inner negations, and it is redundant * with any inner absolute values. */ return integer_abs; case nir_op_ineg: { const enum root_operation root = signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 0), lo, hi); if (*lo == INT32_MIN) { *hi = INT32_MAX; } else { const int32_t a = -(*lo); const int32_t b = -(*hi); *lo = MIN2(a, b); *hi = MAX2(a, b); } /* Negation of a negation cancels out, but negation of absolute value * must preserve the integer_abs bit. */ return root ^ integer_neg; } case nir_op_imax: { int src0_lo, src0_hi; int src1_lo, src1_hi; signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 0), &src0_lo, &src0_hi); signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 1), &src1_lo, &src1_hi); *lo = MAX2(src0_lo, src1_lo); *hi = MAX2(src0_hi, src1_hi); return non_unary; } case nir_op_imin: { int src0_lo, src0_hi; int src1_lo, src1_hi; signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 0), &src0_lo, &src0_hi); signed_integer_range_analysis(shader, range_ht, nir_scalar_chase_alu_src(scalar, 1), &src1_lo, &src1_hi); *lo = MIN2(src0_lo, src1_lo); *hi = MIN2(src0_hi, src1_hi); return non_unary; } default: break; } } /* Any value with the sign-bit set is problematic. Consider the case when * bound is 0x80000000. As an unsigned value, this means the value must be * in the range [0, 0x80000000]. As a signed value, it means the value must * be in the range [0, INT_MAX] or it must be INT_MIN. * * If bound is -2, it means the value is either in the range [INT_MIN, -2] * or it is in the range [0, INT_MAX]. * * This function only returns a single, contiguous range. The union of the * two ranges for any value of bound with the sign-bit set is [INT_MIN, * INT_MAX]. */ const int32_t bound = nir_unsigned_upper_bound(shader, range_ht, scalar, NULL); if (bound < 0) { *lo = INT32_MIN; *hi = INT32_MAX; } else { *lo = 0; *hi = bound; } return non_unary; } static bool intel_nir_opt_peephole_imul32x16_instr(nir_builder *b, nir_instr *instr, void *cb_data) { struct pass_data *d = (struct pass_data *) cb_data; struct hash_table *range_ht = d->range_ht; if (instr->type != nir_instr_type_alu) return false; nir_alu_instr *imul = nir_instr_as_alu(instr); if (imul->op != nir_op_imul) return false; if (imul->def.bit_size != 32) return false; nir_op new_opcode = nir_num_opcodes; unsigned i; for (i = 0; i < 2; i++) { if (!nir_src_is_const(imul->src[i].src)) continue; int64_t lo = INT64_MAX; int64_t hi = INT64_MIN; for (unsigned comp = 0; comp < imul->def.num_components; comp++) { int64_t v = nir_src_comp_as_int(imul->src[i].src, comp); if (v < lo) lo = v; if (v > hi) hi = v; } if (lo >= INT16_MIN && hi <= INT16_MAX) { new_opcode = nir_op_imul_32x16; break; } else if (lo >= 0 && hi <= UINT16_MAX) { new_opcode = nir_op_umul_32x16; break; } } if (new_opcode != nir_num_opcodes) { replace_imul_instr(b, imul, i, new_opcode); return true; } if (imul->def.num_components > 1) return false; const nir_scalar imul_scalar = { &imul->def, 0 }; int idx = -1; enum root_operation prev_root = invalid_root; for (i = 0; i < 2; i++) { /* All constants were previously processed. There is nothing more to * learn from a constant here. */ if (imul->src[i].src.ssa->parent_instr->type == nir_instr_type_load_const) continue; nir_scalar scalar = nir_scalar_chase_alu_src(imul_scalar, i); int lo = INT32_MIN; int hi = INT32_MAX; const enum root_operation root = signed_integer_range_analysis(b->shader, range_ht, scalar, &lo, &hi); /* Copy propagation (in the backend) has trouble handling cases like * * mov(8) g60<1>D -g59<8,8,1>D * mul(8) g61<1>D g63<8,8,1>D g60<16,8,2>W * * If g59 had absolute value instead of negation, even improved copy * propagation would not be able to make progress. * * In cases where both sources to the integer multiplication can fit in * 16-bits, choose the source that does not have a source modifier. */ if (root < prev_root) { if (lo >= INT16_MIN && hi <= INT16_MAX) { new_opcode = nir_op_imul_32x16; idx = i; prev_root = root; if (root == non_unary) break; } else if (lo >= 0 && hi <= UINT16_MAX) { new_opcode = nir_op_umul_32x16; idx = i; prev_root = root; if (root == non_unary) break; } } } if (new_opcode == nir_num_opcodes) { assert(idx == -1); assert(prev_root == invalid_root); return false; } assert(idx != -1); assert(prev_root != invalid_root); replace_imul_instr(b, imul, idx, new_opcode); return true; } bool intel_nir_opt_peephole_imul32x16(nir_shader *shader) { struct pass_data cb_data; cb_data.range_ht = _mesa_pointer_hash_table_create(NULL); bool progress = nir_shader_instructions_pass(shader, intel_nir_opt_peephole_imul32x16_instr, nir_metadata_control_flow, &cb_data); _mesa_hash_table_destroy(cb_data.range_ht, NULL); return progress; }