/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "vk_nir_convert_ycbcr.h" #include "vk_format.h" #include "vk_ycbcr_conversion.h" #include static nir_def * y_range(nir_builder *b, nir_def *y_channel, int bpc, VkSamplerYcbcrRange range) { switch (range) { case VK_SAMPLER_YCBCR_RANGE_ITU_FULL: return y_channel; case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW: return nir_fmul_imm(b, nir_fadd_imm(b, nir_fmul_imm(b, y_channel, pow(2, bpc) - 1), -16.0f * pow(2, bpc - 8)), 1.0f / (219.0f * pow(2, bpc - 8))); default: unreachable("missing Ycbcr range"); return NULL; } } static nir_def * chroma_range(nir_builder *b, nir_def *chroma_channel, int bpc, VkSamplerYcbcrRange range) { switch (range) { case VK_SAMPLER_YCBCR_RANGE_ITU_FULL: return nir_fadd(b, chroma_channel, nir_imm_float(b, -pow(2, bpc - 1) / (pow(2, bpc) - 1.0f))); case VK_SAMPLER_YCBCR_RANGE_ITU_NARROW: return nir_fmul_imm(b, nir_fadd_imm(b, nir_fmul_imm(b, chroma_channel, pow(2, bpc) - 1), -128.0f * pow(2, bpc - 8)), 1.0f / (224.0f * pow(2, bpc - 8))); default: unreachable("missing Ycbcr range"); return NULL; } } typedef struct nir_const_value_3_4 { nir_const_value v[3][4]; } nir_const_value_3_4; static const nir_const_value_3_4 * ycbcr_model_to_rgb_matrix(VkSamplerYcbcrModelConversion model) { switch (model) { case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601: { static const nir_const_value_3_4 bt601 = { { { { .f32 = 1.402f }, { .f32 = 1.0f }, { .f32 = 0.0f }, { .f32 = 0.0f } }, { { .f32 = -0.714136286201022f }, { .f32 = 1.0f }, { .f32 = -0.344136286201022f }, { .f32 = 0.0f } }, { { .f32 = 0.0f }, { .f32 = 1.0f }, { .f32 = 1.772f }, { .f32 = 0.0f } }, } }; return &bt601; } case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709: { static const nir_const_value_3_4 bt709 = { { { { .f32 = 1.5748031496063f }, { .f32 = 1.0f }, { .f32 = 0.0f }, { .f32 = 0.0f } }, { { .f32 = -0.468125209181067f }, { .f32 = 1.0f }, { .f32 = -0.187327487470334f }, { .f32 = 0.0f } }, { { .f32 = 0.0f }, { .f32 = 1.0f }, { .f32 = 1.85563184264242f }, { .f32 = 0.0f } }, } }; return &bt709; } case VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020: { static const nir_const_value_3_4 bt2020 = { { { { .f32 = 1.4746f }, { .f32 = 1.0f }, { .f32 = 0.0f }, { .f32 = 0.0f } }, { { .f32 = -0.571353126843658f }, { .f32 = 1.0f }, { .f32 = -0.164553126843658f }, { .f32 = 0.0f } }, { { .f32 = 0.0f }, { .f32 = 1.0f }, { .f32 = 1.8814f }, { .f32 = 0.0f } }, } }; return &bt2020; } default: unreachable("missing Ycbcr model"); return NULL; } } nir_def * nir_convert_ycbcr_to_rgb(nir_builder *b, VkSamplerYcbcrModelConversion model, VkSamplerYcbcrRange range, nir_def *raw_channels, uint32_t *bpcs) { nir_def *expanded_channels = nir_vec4(b, chroma_range(b, nir_channel(b, raw_channels, 0), bpcs[0], range), y_range(b, nir_channel(b, raw_channels, 1), bpcs[1], range), chroma_range(b, nir_channel(b, raw_channels, 2), bpcs[2], range), nir_channel(b, raw_channels, 3)); if (model == VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY) return expanded_channels; const nir_const_value_3_4 *conversion_matrix = ycbcr_model_to_rgb_matrix(model); nir_def *converted_channels[] = { nir_fdot(b, expanded_channels, nir_build_imm(b, 4, 32, conversion_matrix->v[0])), nir_fdot(b, expanded_channels, nir_build_imm(b, 4, 32, conversion_matrix->v[1])), nir_fdot(b, expanded_channels, nir_build_imm(b, 4, 32, conversion_matrix->v[2])) }; return nir_vec4(b, converted_channels[0], converted_channels[1], converted_channels[2], nir_channel(b, raw_channels, 3)); } struct ycbcr_state { nir_builder *builder; nir_def *image_size; nir_tex_instr *origin_tex; nir_deref_instr *tex_deref; const struct vk_ycbcr_conversion_state *conversion; const struct vk_format_ycbcr_info *format_ycbcr_info; }; /* TODO: we should probably replace this with a push constant/uniform. */ static nir_def * get_texture_size(struct ycbcr_state *state, nir_deref_instr *texture) { if (state->image_size) return state->image_size; nir_builder *b = state->builder; const struct glsl_type *type = texture->type; nir_tex_instr *tex = nir_tex_instr_create(b->shader, 1); tex->op = nir_texop_txs; tex->sampler_dim = glsl_get_sampler_dim(type); tex->is_array = glsl_sampler_type_is_array(type); tex->is_shadow = glsl_sampler_type_is_shadow(type); tex->dest_type = nir_type_int32; tex->src[0] = nir_tex_src_for_ssa(nir_tex_src_texture_deref, &texture->def); nir_def_init(&tex->instr, &tex->def, nir_tex_instr_dest_size(tex), 32); nir_builder_instr_insert(b, &tex->instr); state->image_size = nir_i2f32(b, &tex->def); return state->image_size; } static nir_def * implicit_downsampled_coord(nir_builder *b, nir_def *value, nir_def *max_value, int div_scale) { return nir_fadd(b, value, nir_frcp(b, nir_fmul(b, nir_imm_float(b, div_scale), max_value))); } static nir_def * implicit_downsampled_coords(struct ycbcr_state *state, nir_def *old_coords, const struct vk_format_ycbcr_plane *format_plane) { nir_builder *b = state->builder; const struct vk_ycbcr_conversion_state *conversion = state->conversion; nir_def *image_size = get_texture_size(state, state->tex_deref); nir_def *comp[4] = { NULL, }; int c; for (c = 0; c < ARRAY_SIZE(conversion->chroma_offsets); c++) { if (format_plane->denominator_scales[c] > 1 && conversion->chroma_offsets[c] == VK_CHROMA_LOCATION_COSITED_EVEN) { comp[c] = implicit_downsampled_coord(b, nir_channel(b, old_coords, c), nir_channel(b, image_size, c), format_plane->denominator_scales[c]); } else { comp[c] = nir_channel(b, old_coords, c); } } /* Leave other coordinates untouched */ for (; c < old_coords->num_components; c++) comp[c] = nir_channel(b, old_coords, c); return nir_vec(b, comp, old_coords->num_components); } static nir_def * create_plane_tex_instr_implicit(struct ycbcr_state *state, uint32_t plane) { nir_builder *b = state->builder; const struct vk_ycbcr_conversion_state *conversion = state->conversion; const struct vk_format_ycbcr_plane *format_plane = &state->format_ycbcr_info->planes[plane]; nir_tex_instr *old_tex = state->origin_tex; nir_tex_instr *tex = nir_tex_instr_create(b->shader, old_tex->num_srcs + 1); for (uint32_t i = 0; i < old_tex->num_srcs; i++) { tex->src[i].src_type = old_tex->src[i].src_type; switch (old_tex->src[i].src_type) { case nir_tex_src_coord: if (format_plane->has_chroma && conversion->chroma_reconstruction) { tex->src[i].src = nir_src_for_ssa(implicit_downsampled_coords(state, old_tex->src[i].src.ssa, format_plane)); break; } FALLTHROUGH; default: tex->src[i].src = nir_src_for_ssa(old_tex->src[i].src.ssa); break; } } tex->src[tex->num_srcs - 1] = nir_tex_src_for_ssa(nir_tex_src_plane, nir_imm_int(b, plane)); tex->sampler_dim = old_tex->sampler_dim; tex->dest_type = old_tex->dest_type; tex->op = old_tex->op; tex->coord_components = old_tex->coord_components; tex->is_new_style_shadow = old_tex->is_new_style_shadow; tex->component = old_tex->component; tex->texture_index = old_tex->texture_index; tex->sampler_index = old_tex->sampler_index; tex->is_array = old_tex->is_array; nir_def_init(&tex->instr, &tex->def, old_tex->def.num_components, old_tex->def.bit_size); nir_builder_instr_insert(b, &tex->instr); return &tex->def; } static unsigned swizzle_to_component(VkComponentSwizzle swizzle) { switch (swizzle) { case VK_COMPONENT_SWIZZLE_R: return 0; case VK_COMPONENT_SWIZZLE_G: return 1; case VK_COMPONENT_SWIZZLE_B: return 2; case VK_COMPONENT_SWIZZLE_A: return 3; default: unreachable("invalid channel"); return 0; } } struct lower_ycbcr_tex_state { nir_vk_ycbcr_conversion_lookup_cb cb; const void *cb_data; }; static bool lower_ycbcr_tex_instr(nir_builder *b, nir_instr *instr, void *_state) { const struct lower_ycbcr_tex_state *state = _state; if (instr->type != nir_instr_type_tex) return false; nir_tex_instr *tex = nir_instr_as_tex(instr); /* For the following instructions, we don't apply any change and let the * instruction apply to the first plane. */ if (tex->op == nir_texop_txs || tex->op == nir_texop_query_levels || tex->op == nir_texop_lod) return false; int deref_src_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_deref); assert(deref_src_idx >= 0); nir_deref_instr *deref = nir_src_as_deref(tex->src[deref_src_idx].src); nir_variable *var = nir_deref_instr_get_variable(deref); uint32_t set = var->data.descriptor_set; uint32_t binding = var->data.binding; assert(tex->texture_index == 0); unsigned array_index = 0; if (deref->deref_type != nir_deref_type_var) { assert(deref->deref_type == nir_deref_type_array); if (!nir_src_is_const(deref->arr.index)) return false; array_index = nir_src_as_uint(deref->arr.index); } const struct vk_ycbcr_conversion_state *conversion = state->cb(state->cb_data, set, binding, array_index); if (conversion == NULL) return false; const struct vk_format_ycbcr_info *format_ycbcr_info = vk_format_get_ycbcr_info(conversion->format); /* This can happen if the driver hasn't done a good job of filtering on * sampler creation and lets through a VkYcbcrConversion object which isn't * actually YCbCr. We're supposed to ignore those. */ if (format_ycbcr_info == NULL) return false; b->cursor = nir_before_instr(&tex->instr); VkFormat y_format = VK_FORMAT_UNDEFINED; for (uint32_t p = 0; p < format_ycbcr_info->n_planes; p++) { if (!format_ycbcr_info->planes[p].has_chroma) y_format = format_ycbcr_info->planes[p].format; } assert(y_format != VK_FORMAT_UNDEFINED); uint8_t y_bpc = vk_format_get_bpc(y_format); /* |ycbcr_comp| holds components in the order : Cr-Y-Cb */ nir_def *zero = nir_imm_float(b, 0.0f); nir_def *one = nir_imm_float(b, 1.0f); /* Use extra 2 channels for following swizzle */ nir_def *ycbcr_comp[5] = { zero, zero, zero, one, zero }; uint8_t ycbcr_bpcs[5]; memset(ycbcr_bpcs, y_bpc, sizeof(ycbcr_bpcs)); /* Go through all the planes and gather the samples into a |ycbcr_comp| * while applying a swizzle required by the spec: * * R, G, B should respectively map to Cr, Y, Cb */ for (uint32_t p = 0; p < format_ycbcr_info->n_planes; p++) { const struct vk_format_ycbcr_plane *format_plane = &format_ycbcr_info->planes[p]; struct ycbcr_state tex_state = { .builder = b, .origin_tex = tex, .tex_deref = deref, .conversion = conversion, .format_ycbcr_info = format_ycbcr_info, }; nir_def *plane_sample = create_plane_tex_instr_implicit(&tex_state, p); for (uint32_t pc = 0; pc < 4; pc++) { VkComponentSwizzle ycbcr_swizzle = format_plane->ycbcr_swizzle[pc]; if (ycbcr_swizzle == VK_COMPONENT_SWIZZLE_ZERO) continue; unsigned ycbcr_component = swizzle_to_component(ycbcr_swizzle); ycbcr_comp[ycbcr_component] = nir_channel(b, plane_sample, pc); /* Also compute the number of bits for each component. */ const struct util_format_description *plane_format_desc = vk_format_description(format_plane->format); if (plane_format_desc->channel[pc].type == UTIL_FORMAT_TYPE_VOID) continue; ycbcr_bpcs[ycbcr_component] = plane_format_desc->channel[pc].size; } } /* Now remaps components to the order specified by the conversion. */ nir_def *swizzled_comp[4] = { NULL, }; uint32_t swizzled_bpcs[4] = { 0, }; for (uint32_t i = 0; i < ARRAY_SIZE(conversion->mapping); i++) { /* Maps to components in |ycbcr_comp| */ static const uint32_t swizzle_mapping[] = { [VK_COMPONENT_SWIZZLE_ZERO] = 4, [VK_COMPONENT_SWIZZLE_ONE] = 3, [VK_COMPONENT_SWIZZLE_R] = 0, [VK_COMPONENT_SWIZZLE_G] = 1, [VK_COMPONENT_SWIZZLE_B] = 2, [VK_COMPONENT_SWIZZLE_A] = 3, }; const VkComponentSwizzle m = conversion->mapping[i]; if (m == VK_COMPONENT_SWIZZLE_IDENTITY) { swizzled_comp[i] = ycbcr_comp[i]; swizzled_bpcs[i] = ycbcr_bpcs[i]; } else { swizzled_comp[i] = ycbcr_comp[swizzle_mapping[m]]; swizzled_bpcs[i] = ycbcr_bpcs[swizzle_mapping[m]]; } } nir_def *result = nir_vec(b, swizzled_comp, 4); if (conversion->ycbcr_model != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) { result = nir_convert_ycbcr_to_rgb(b, conversion->ycbcr_model, conversion->ycbcr_range, result, swizzled_bpcs); } nir_def_replace(&tex->def, result); return true; } bool nir_vk_lower_ycbcr_tex(nir_shader *nir, nir_vk_ycbcr_conversion_lookup_cb cb, const void *cb_data) { struct lower_ycbcr_tex_state state = { .cb = cb, .cb_data = cb_data, }; return nir_shader_instructions_pass(nir, lower_ycbcr_tex_instr, nir_metadata_control_flow, &state); }