#!/usr/bin/env python3 # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import unittest import config import thread_cert from pktverify.consts import MLE_ADVERTISEMENT, MLE_PARENT_REQUEST, MLE_DATA_REQUEST, MLE_DATA_RESPONSE, MLE_CHILD_UPDATE_REQUEST, MLE_CHILD_UPDATE_RESPONSE, MLE_CHILD_ID_REQUEST, MLE_CHILD_ID_RESPONSE, ADDR_SOL_URI, VERSION_TLV, TLV_REQUEST_TLV, SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, CHALLENGE_TLV, LINK_MARGIN_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV, PENDING_TIMESTAMP_TLV, ACTIVE_OPERATION_DATASET_TLV, PENDING_OPERATION_DATASET_TLV, LINK_LOCAL_ALL_NODES_MULTICAST_ADDRESS, LINK_LOCAL_ALL_ROUTERS_MULTICAST_ADDRESS, NM_COMMISSIONER_SESSION_ID_TLV, NM_BORDER_AGENT_LOCATOR_TLV, NM_CHANNEL_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_PAN_ID_TLV, NM_DELAY_TIMER_TLV, NM_ACTIVE_TIMESTAMP_TLV from pktverify.packet_verifier import PacketVerifier CHANNEL_INIT = 19 PANID_INIT = 0xface CHANNEL_FINAL = 16 PANID_FINAL = 0xafce COMMISSIONER = 1 LEADER = 2 ROUTER1 = 3 ED1 = 4 SED1 = 5 MTDS = [ED1, SED1] class Cert_9_2_10_PendingPartition(thread_cert.TestCase): SUPPORT_NCP = False TOPOLOGY = { COMMISSIONER: { 'name': 'COMMISSIONER', 'active_dataset': { 'timestamp': 15, 'channel': 19 }, 'mode': 'rdn', 'allowlist': [LEADER] }, LEADER: { 'name': 'LEADER', 'active_dataset': { 'timestamp': 15, 'channel': 19 }, 'mode': 'rdn', 'partition_id': 0xffffffff, 'allowlist': [COMMISSIONER, ROUTER1] }, ROUTER1: { 'name': 'ROUTER', 'active_dataset': { 'timestamp': 15, 'channel': 19 }, 'mode': 'rdn', 'allowlist': [LEADER, ED1, SED1] }, ED1: { 'name': 'MED', 'channel': 19, 'is_mtd': True, 'mode': 'rn', 'allowlist': [ROUTER1] }, SED1: { 'name': 'SED', 'channel': 19, 'is_mtd': True, 'mode': '-', 'timeout': config.DEFAULT_CHILD_TIMEOUT, 'allowlist': [ROUTER1] }, } def test(self): self.nodes[LEADER].start() self.simulator.go(config.LEADER_STARTUP_DELAY) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[COMMISSIONER].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[COMMISSIONER].get_state(), 'router') self.nodes[COMMISSIONER].commissioner_start() self.simulator.go(3) self.nodes[ROUTER1].start() self.simulator.go(config.ROUTER_STARTUP_DELAY) self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.nodes[ED1].start() self.simulator.go(5) self.assertEqual(self.nodes[ED1].get_state(), 'child') self.nodes[SED1].start() self.simulator.go(5) self.assertEqual(self.nodes[SED1].get_state(), 'child') self.nodes[COMMISSIONER].send_mgmt_pending_set( pending_timestamp=30, active_timestamp=165, delay_timer=250, channel=CHANNEL_FINAL, panid=PANID_FINAL, ) self.simulator.go(260) self.nodes[LEADER].remove_allowlist(self.nodes[ROUTER1].get_addr64()) self.nodes[ROUTER1].remove_allowlist(self.nodes[LEADER].get_addr64()) self.simulator.go(300) self.assertEqual(self.nodes[ROUTER1].get_state(), 'leader') self.assertEqual(self.nodes[ED1].get_state(), 'child') self.assertEqual(self.nodes[SED1].get_state(), 'child') self.assertEqual(self.nodes[ROUTER1].get_panid(), PANID_FINAL) self.assertEqual(self.nodes[ED1].get_panid(), PANID_FINAL) self.assertEqual(self.nodes[SED1].get_panid(), PANID_FINAL) self.assertEqual(self.nodes[ROUTER1].get_channel(), CHANNEL_FINAL) self.assertEqual(self.nodes[ED1].get_channel(), CHANNEL_FINAL) self.assertEqual(self.nodes[SED1].get_channel(), CHANNEL_FINAL) self.nodes[LEADER].add_allowlist(self.nodes[ROUTER1].get_addr64()) self.nodes[ROUTER1].add_allowlist(self.nodes[LEADER].get_addr64()) self.simulator.go(60) self.assertEqual(self.nodes[COMMISSIONER].get_state(), 'router') self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.assertEqual(self.nodes[ED1].get_state(), 'child') self.assertEqual(self.nodes[SED1].get_state(), 'child') ipaddrs = self.nodes[ED1].get_addrs() for ipaddr in ipaddrs: if ipaddr[0:4] != 'fe80': break self.assertTrue(self.nodes[LEADER].ping(ipaddr)) def verify(self, pv): pkts = pv.pkts pv.summary.show() LEADER = pv.vars['LEADER'] ROUTER = pv.vars['ROUTER'] MED = pv.vars['MED'] SED = pv.vars['SED'] COMMISSIONER = pv.vars['COMMISSIONER'] _rpkts = pkts.filter_wpan_src64(ROUTER, cascade=False) # Step 1: Ensure the topology is formed correctly _rpkts.filter_wpan_dst64(SED).filter_mle_cmd(MLE_CHILD_ID_RESPONSE).must_next() # Step 5: Router MUST send a unicast MLE Data Request to the Leader _rpkts.filter_wpan_dst64(LEADER).filter_mle_cmd(MLE_DATA_REQUEST).must_next().must_verify( lambda p: {TLV_REQUEST_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV} <= set(p.mle.tlv.type)) _rpkts_med = _rpkts.copy() # Step 7: Router MUST multicast a MLE Data Response _rpkts.filter_ipv6_dst(LINK_LOCAL_ALL_NODES_MULTICAST_ADDRESS).filter_mle_cmd( MLE_DATA_RESPONSE).must_next().must_verify(lambda p: { SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV, PENDING_TIMESTAMP_TLV } <= set(p.mle.tlv.type) and {NM_COMMISSIONER_SESSION_ID_TLV, NM_BORDER_AGENT_LOCATOR_TLV} <= set( p.thread_meshcop.tlv.type) and p.thread_nwd.tlv.stable == [0]) # Step 8: MED MUST send a unicast MLE Data Request to Router_1, with pkts.save_index(): pkts.filter_wpan_src64(MED).filter_wpan_dst64(ROUTER).filter_mle_cmd(MLE_DATA_REQUEST).must_next( ).must_verify(lambda p: {TLV_REQUEST_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV} <= set(p.mle.tlv.type)) # Step 9: Router MUST send a unicast MLE Data Response to MED_1 _rpkts_med.filter_wpan_dst64(MED).filter_mle_cmd(MLE_DATA_RESPONSE).must_next().must_verify(lambda p: { SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV, PENDING_OPERATION_DATASET_TLV } <= set(p.mle.tlv.type) and { NM_CHANNEL_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_PAN_ID_TLV, NM_DELAY_TIMER_TLV, NM_ACTIVE_TIMESTAMP_TLV } <= set(p.thread_meshcop.tlv.type) and p.thread_nwd.tlv.stable == [0]) # Step 10: Router MUST send MLE Child Update Request to SED_1 _rpkts.range(pkts.index).filter_wpan_dst64(SED).filter_mle_cmd( MLE_CHILD_UPDATE_REQUEST).must_next().must_verify(lambda p: { SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV, PENDING_TIMESTAMP_TLV } <= set(p.mle.tlv.type)) # Step 11: SED MUST send a unicast MLE Data Request to Router_1 pkts.filter_wpan_src64(SED).filter_wpan_dst64(ROUTER).filter_mle_cmd(MLE_DATA_REQUEST).must_next().must_verify( lambda p: {TLV_REQUEST_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV} <= set(p.mle.tlv.type)) # Step 12: Router MUST send a unicast MLE Data Response to SED_1 _pkt = _rpkts.filter_wpan_dst64(SED).filter_mle_cmd(MLE_DATA_RESPONSE).must_next() _pkt.must_verify(lambda p: { SOURCE_ADDRESS_TLV, LEADER_DATA_TLV, NETWORK_DATA_TLV, ACTIVE_TIMESTAMP_TLV, PENDING_OPERATION_DATASET_TLV } <= set(p.mle.tlv.type) and { NM_CHANNEL_TLV, NM_NETWORK_MESH_LOCAL_PREFIX_TLV, NM_PAN_ID_TLV, NM_DELAY_TIMER_TLV, NM_ACTIVE_TIMESTAMP_TLV } <= set(p.thread_meshcop.tlv.type)) # Step 14: After NETWORK_ID_TIMEOUT, Router MUST start a new partition _rpkts.filter_ipv6_dst(LINK_LOCAL_ALL_ROUTERS_MULTICAST_ADDRESS).filter_mle_cmd( MLE_PARENT_REQUEST).must_next().must_verify(lambda p: p.sniff_timestamp - _pkt.sniff_timestamp > 300) _rpkts.filter_mle_cmd(MLE_DATA_RESPONSE).filter(lambda p: p.wpan.dst_pan == PANID_FINAL).must_next() # Step 16: After the Delay Timer expires, Router MUST move to the Secondary channel _rpkts.filter_mle_cmd(MLE_ADVERTISEMENT).filter(lambda p: p.wpan.dst_pan == PANID_FINAL).must_next() # Step 19: Router MUST reattach to the Leader and the partitions MUST merge pkts.filter_wpan_src64(LEADER).filter_wpan_dst64(ROUTER).filter_mle_cmd( MLE_CHILD_ID_RESPONSE).must_next().must_verify(lambda p: p.mle.tlv.leader_data.partition_id == 0xffffffff) # Step 20: MED MUST respond with an ICMPv6 Echo Reply p = pkts.filter_ping_request().filter_wpan_src64(LEADER).must_next() pkts.filter_ping_reply(identifier=p.icmpv6.echo.identifier).filter_wpan_src64(MED).must_next() if __name__ == '__main__': unittest.main()