// Copyright 2016 The PDFium Authors // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com #include "core/fxge/cfx_renderdevice.h" #include #include #include #include #include "build/build_config.h" #include "core/fxcrt/check.h" #include "core/fxcrt/check_op.h" #include "core/fxcrt/compiler_specific.h" #include "core/fxcrt/fx_safe_types.h" #include "core/fxcrt/span.h" #include "core/fxge/cfx_color.h" #include "core/fxge/cfx_defaultrenderdevice.h" #include "core/fxge/cfx_fillrenderoptions.h" #include "core/fxge/cfx_font.h" #include "core/fxge/cfx_fontmgr.h" #include "core/fxge/cfx_gemodule.h" #include "core/fxge/cfx_glyphbitmap.h" #include "core/fxge/cfx_glyphcache.h" #include "core/fxge/cfx_graphstatedata.h" #include "core/fxge/cfx_path.h" #include "core/fxge/cfx_textrenderoptions.h" #include "core/fxge/dib/cfx_dibitmap.h" #include "core/fxge/fx_font.h" #include "core/fxge/renderdevicedriver_iface.h" #include "core/fxge/text_char_pos.h" #include "core/fxge/text_glyph_pos.h" #if defined(PDF_USE_SKIA) #include "third_party/skia/include/core/SkTypes.h" // nogncheck #endif namespace { void AdjustGlyphSpace(std::vector* pGlyphAndPos) { DCHECK_GT(pGlyphAndPos->size(), 1u); std::vector& glyphs = *pGlyphAndPos; bool bVertical = glyphs.back().m_Origin.x == glyphs.front().m_Origin.x; if (!bVertical && (glyphs.back().m_Origin.y != glyphs.front().m_Origin.y)) return; for (size_t i = glyphs.size() - 1; i > 1; --i) { const TextGlyphPos& next = glyphs[i]; int next_origin = bVertical ? next.m_Origin.y : next.m_Origin.x; float next_origin_f = bVertical ? next.m_fDeviceOrigin.y : next.m_fDeviceOrigin.x; TextGlyphPos& current = glyphs[i - 1]; int& current_origin = bVertical ? current.m_Origin.y : current.m_Origin.x; float current_origin_f = bVertical ? current.m_fDeviceOrigin.y : current.m_fDeviceOrigin.x; FX_SAFE_INT32 safe_space = next_origin; safe_space -= current_origin; if (!safe_space.IsValid()) continue; int space = safe_space.ValueOrDie(); float space_f = next_origin_f - current_origin_f; float error = fabs(space_f) - fabs(static_cast(space)); if (error <= 0.5f) continue; FX_SAFE_INT32 safe_origin = current_origin; safe_origin += space > 0 ? -1 : 1; if (!safe_origin.IsValid()) continue; current_origin = safe_origin.ValueOrDie(); } } constexpr std::array kTextGammaAdjust = {{ 0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 250, 251, 252, 253, 254, 255, }}; int TextGammaAdjust(int value) { return kTextGammaAdjust[value]; } int CalcAlpha(int src, int alpha) { return src * alpha / 255; } void MergeGammaAdjust(uint8_t src, int channel, int alpha, uint8_t* dest) { *dest = FXDIB_ALPHA_MERGE(*dest, channel, CalcAlpha(TextGammaAdjust(src), alpha)); } void MergeGammaAdjustRgb(const uint8_t* src, const FX_BGRA_STRUCT& bgra, uint8_t* dest) { UNSAFE_TODO({ MergeGammaAdjust(src[2], bgra.blue, bgra.alpha, &dest[0]); MergeGammaAdjust(src[1], bgra.green, bgra.alpha, &dest[1]); MergeGammaAdjust(src[0], bgra.red, bgra.alpha, &dest[2]); }); } int AverageRgb(const uint8_t* src) { return UNSAFE_TODO((src[0] + src[1] + src[2]) / 3); } uint8_t CalculateDestAlpha(uint8_t back_alpha, int src_alpha) { return back_alpha + src_alpha - back_alpha * src_alpha / 255; } void ApplyAlpha(uint8_t* dest, const FX_BGRA_STRUCT& bgra, int alpha) { UNSAFE_TODO({ dest[0] = FXDIB_ALPHA_MERGE(dest[0], bgra.blue, alpha); dest[1] = FXDIB_ALPHA_MERGE(dest[1], bgra.green, alpha); dest[2] = FXDIB_ALPHA_MERGE(dest[2], bgra.red, alpha); }); } void ApplyDestAlpha(uint8_t back_alpha, int src_alpha, const FX_BGRA_STRUCT& bgra, uint8_t* dest) { uint8_t dest_alpha = CalculateDestAlpha(back_alpha, src_alpha); ApplyAlpha(dest, bgra, src_alpha * 255 / dest_alpha); UNSAFE_TODO(dest[3] = dest_alpha); } void NormalizeArgb(int src_value, const FX_BGRA_STRUCT& bgra, uint8_t* dest, int src_alpha) { UNSAFE_TODO({ uint8_t back_alpha = dest[3]; if (back_alpha == 0) { FXARGB_SetDIB(dest, ArgbEncode(src_alpha, bgra.red, bgra.green, bgra.blue)); } else if (src_alpha != 0) { ApplyDestAlpha(back_alpha, src_alpha, bgra, dest); } }); } void NormalizeDest(bool has_alpha, int src_value, const FX_BGRA_STRUCT& bgra, uint8_t* dest) { if (has_alpha) { NormalizeArgb(src_value, bgra, dest, CalcAlpha(TextGammaAdjust(src_value), bgra.alpha)); return; } int src_alpha = CalcAlpha(TextGammaAdjust(src_value), bgra.alpha); if (src_alpha == 0) return; ApplyAlpha(dest, bgra, src_alpha); } void NormalizeSrc(bool has_alpha, int src_value, const FX_BGRA_STRUCT& bgra, uint8_t* dest) { if (!has_alpha) { ApplyAlpha(dest, bgra, CalcAlpha(TextGammaAdjust(src_value), bgra.alpha)); return; } int src_alpha = CalcAlpha(TextGammaAdjust(src_value), bgra.alpha); if (src_alpha != 0) NormalizeArgb(src_value, bgra, dest, src_alpha); } void NextPixel(const uint8_t** src_scan, uint8_t** dst_scan, int bpp) { UNSAFE_TODO({ *src_scan += 3; *dst_scan += bpp; }); } void SetAlpha(bool has_alpha, uint8_t* alpha) { if (has_alpha) { UNSAFE_TODO(alpha[3] = 255); } } void DrawNormalTextHelper(const RetainPtr& bitmap, const RetainPtr& pGlyph, int nrows, int left, int top, int start_col, int end_col, bool normalize, int x_subpixel, const FX_BGRA_STRUCT& bgra) { // TODO(crbug.com/42271020): Add support for `FXDIB_Format::kBgraPremul`. CHECK(!bitmap->IsPremultiplied()); const bool has_alpha = bitmap->IsAlphaFormat(); const int bytes_per_pixel = has_alpha ? 4 : bitmap->GetBPP() / 8; for (int row = 0; row < nrows; ++row) { FX_SAFE_INT32 safe_dest_row = row; safe_dest_row += top; const int dest_row = safe_dest_row.ValueOrDefault(-1); if (dest_row < 0 || dest_row >= bitmap->GetHeight()) { continue; } const uint8_t* src_scan = pGlyph->GetScanline(row).subspan((start_col - left) * 3).data(); uint8_t* dest_scan = bitmap->GetWritableScanline(dest_row) .subspan(start_col * bytes_per_pixel) .data(); if (x_subpixel == 0) { for (int col = start_col; col < end_col; ++col) { if (normalize) { int src_value = AverageRgb(&src_scan[0]); NormalizeDest(has_alpha, src_value, bgra, dest_scan); } else { MergeGammaAdjustRgb(&src_scan[0], bgra, &dest_scan[0]); SetAlpha(has_alpha, dest_scan); } NextPixel(&src_scan, &dest_scan, bytes_per_pixel); } continue; } UNSAFE_TODO({ if (x_subpixel == 1) { if (normalize) { int src_value = start_col > left ? AverageRgb(&src_scan[-1]) : (src_scan[0] + src_scan[1]) / 3; NormalizeSrc(has_alpha, src_value, bgra, dest_scan); } else { if (start_col > left) { MergeGammaAdjust(src_scan[-1], bgra.red, bgra.alpha, &dest_scan[2]); } MergeGammaAdjust(src_scan[0], bgra.green, bgra.alpha, &dest_scan[1]); MergeGammaAdjust(src_scan[1], bgra.blue, bgra.alpha, &dest_scan[0]); SetAlpha(has_alpha, dest_scan); } NextPixel(&src_scan, &dest_scan, bytes_per_pixel); for (int col = start_col + 1; col < end_col; ++col) { if (normalize) { int src_value = AverageRgb(&src_scan[-1]); NormalizeDest(has_alpha, src_value, bgra, dest_scan); } else { MergeGammaAdjustRgb(&src_scan[-1], bgra, &dest_scan[0]); SetAlpha(has_alpha, dest_scan); } NextPixel(&src_scan, &dest_scan, bytes_per_pixel); } continue; } if (normalize) { int src_value = start_col > left ? AverageRgb(&src_scan[-2]) : src_scan[0] / 3; NormalizeSrc(has_alpha, src_value, bgra, dest_scan); } else { if (start_col > left) { MergeGammaAdjust(src_scan[-2], bgra.red, bgra.alpha, &dest_scan[2]); MergeGammaAdjust(src_scan[-1], bgra.green, bgra.alpha, &dest_scan[1]); } MergeGammaAdjust(src_scan[0], bgra.blue, bgra.alpha, &dest_scan[0]); SetAlpha(has_alpha, dest_scan); } NextPixel(&src_scan, &dest_scan, bytes_per_pixel); for (int col = start_col + 1; col < end_col; ++col) { if (normalize) { int src_value = AverageRgb(&src_scan[-2]); NormalizeDest(has_alpha, src_value, bgra, dest_scan); } else { MergeGammaAdjustRgb(&src_scan[-2], bgra, &dest_scan[0]); SetAlpha(has_alpha, dest_scan); } NextPixel(&src_scan, &dest_scan, bytes_per_pixel); } }); } } bool ShouldDrawDeviceText(const CFX_Font* pFont, const CFX_TextRenderOptions& options) { #if BUILDFLAG(IS_APPLE) if (options.font_is_cid) return false; const ByteString bsPsName = pFont->GetPsName(); if (bsPsName.Contains("+ZJHL")) return false; if (bsPsName == "CNAAJI+cmex10") return false; #endif return true; } // Returns true if the path is a 3-point path that draws A->B->A and forms a // zero area, or a 2-point path which draws A->B. bool CheckSimpleLinePath(pdfium::span points, const CFX_Matrix* matrix, bool adjust, CFX_Path* new_path, bool* thin, bool* set_identity) { if (points.size() != 2 && points.size() != 3) return false; if (points[0].m_Type != CFX_Path::Point::Type::kMove || points[1].m_Type != CFX_Path::Point::Type::kLine || (points.size() == 3 && (points[2].m_Type != CFX_Path::Point::Type::kLine || points[0].m_Point != points[2].m_Point))) { return false; } // A special case that all points are identical, zero area is formed and no // thin line needs to be drawn. if (points[0].m_Point == points[1].m_Point) return true; for (size_t i = 0; i < 2; i++) { CFX_PointF point = points[i].m_Point; if (adjust) { if (matrix) point = matrix->Transform(point); point = CFX_PointF(static_cast(point.x) + 0.5f, static_cast(point.y) + 0.5f); } new_path->AppendPoint(point, points[i].m_Type); } if (adjust && matrix) *set_identity = true; *thin = true; return true; } // Returns true if `points` is palindromic and forms zero area. Otherwise, // returns false. bool CheckPalindromicPath(pdfium::span points, CFX_Path* new_path, bool* thin) { if (points.size() <= 3 || !(points.size() % 2)) return false; const size_t mid = points.size() / 2; CFX_Path temp_path; for (size_t i = 0; i < mid; i++) { const CFX_Path::Point& left = points[mid - i - 1]; const CFX_Path::Point& right = points[mid + i + 1]; bool zero_area = left.m_Point == right.m_Point && left.m_Type != CFX_Path::Point::Type::kBezier && right.m_Type != CFX_Path::Point::Type::kBezier; if (!zero_area) return false; temp_path.AppendPoint(points[mid - i].m_Point, CFX_Path::Point::Type::kMove); temp_path.AppendPoint(left.m_Point, CFX_Path::Point::Type::kLine); } new_path->Append(temp_path, nullptr); *thin = true; return true; } bool IsFoldingVerticalLine(const CFX_PointF& a, const CFX_PointF& b, const CFX_PointF& c) { return a.x == b.x && b.x == c.x && (b.y - a.y) * (b.y - c.y) > 0; } bool IsFoldingHorizontalLine(const CFX_PointF& a, const CFX_PointF& b, const CFX_PointF& c) { return a.y == b.y && b.y == c.y && (b.x - a.x) * (b.x - c.x) > 0; } bool IsFoldingDiagonalLine(const CFX_PointF& a, const CFX_PointF& b, const CFX_PointF& c) { return a.x != b.x && c.x != b.x && a.y != b.y && c.y != b.y && (a.y - b.y) * (c.x - b.x) == (c.y - b.y) * (a.x - b.x); } bool GetZeroAreaPath(pdfium::span points, const CFX_Matrix* matrix, bool adjust, CFX_Path* new_path, bool* thin, bool* set_identity) { *set_identity = false; if (points.size() < 2) return false; if (CheckSimpleLinePath(points, matrix, adjust, new_path, thin, set_identity)) { return true; } if (CheckPalindromicPath(points, new_path, thin)) return true; for (size_t i = 0; i < points.size(); i++) { CFX_Path::Point::Type point_type = points[i].m_Type; if (point_type == CFX_Path::Point::Type::kMove) { DCHECK_EQ(0u, i); continue; } if (point_type == CFX_Path::Point::Type::kBezier) { i += 2; DCHECK_LT(i, points.size()); continue; } DCHECK_EQ(point_type, CFX_Path::Point::Type::kLine); size_t next_index = (i + 1) % (points.size()); const CFX_Path::Point& next = points[next_index]; if (next.m_Type != CFX_Path::Point::Type::kLine) continue; const CFX_Path::Point& prev = points[i - 1]; const CFX_Path::Point& cur = points[i]; if (IsFoldingVerticalLine(prev.m_Point, cur.m_Point, next.m_Point)) { bool use_prev = fabs(cur.m_Point.y - prev.m_Point.y) < fabs(cur.m_Point.y - next.m_Point.y); const CFX_Path::Point& start = use_prev ? prev : cur; const CFX_Path::Point& end = use_prev ? cur : next; new_path->AppendPoint(start.m_Point, CFX_Path::Point::Type::kMove); new_path->AppendPoint(end.m_Point, CFX_Path::Point::Type::kLine); continue; } if (IsFoldingHorizontalLine(prev.m_Point, cur.m_Point, next.m_Point) || IsFoldingDiagonalLine(prev.m_Point, cur.m_Point, next.m_Point)) { bool use_prev = fabs(cur.m_Point.x - prev.m_Point.x) < fabs(cur.m_Point.x - next.m_Point.x); const CFX_Path::Point& start = use_prev ? prev : cur; const CFX_Path::Point& end = use_prev ? cur : next; new_path->AppendPoint(start.m_Point, CFX_Path::Point::Type::kMove); new_path->AppendPoint(end.m_Point, CFX_Path::Point::Type::kLine); continue; } } size_t new_path_size = new_path->GetPoints().size(); if (points.size() > 3 && new_path_size > 0) *thin = true; return new_path_size != 0; } FXDIB_Format GetCreateCompatibleBitmapFormat(int render_caps, bool use_argb_premul) { if (render_caps & FXRC_BYTEMASK_OUTPUT) { return FXDIB_Format::k8bppMask; } #if defined(PDF_USE_SKIA) if (use_argb_premul && (render_caps & FXRC_PREMULTIPLIED_ALPHA)) { return FXDIB_Format::kBgraPremul; } #endif if (render_caps & FXRC_ALPHA_OUTPUT) { return FXDIB_Format::kBgra; } return CFX_DIBBase::kPlatformRGBFormat; } } // namespace CFX_RenderDevice::CFX_RenderDevice() = default; CFX_RenderDevice::~CFX_RenderDevice() { RestoreState(false); } // static CFX_Matrix CFX_RenderDevice::GetFlipMatrix(float width, float height, float left, float top) { return CFX_Matrix(width, 0, 0, -height, left, top + height); } void CFX_RenderDevice::SetDeviceDriver( std::unique_ptr pDriver) { DCHECK(pDriver); DCHECK(!m_pDeviceDriver); m_pDeviceDriver = std::move(pDriver); InitDeviceInfo(); } void CFX_RenderDevice::InitDeviceInfo() { m_Width = m_pDeviceDriver->GetDeviceCaps(FXDC_PIXEL_WIDTH); m_Height = m_pDeviceDriver->GetDeviceCaps(FXDC_PIXEL_HEIGHT); m_bpp = m_pDeviceDriver->GetDeviceCaps(FXDC_BITS_PIXEL); m_RenderCaps = m_pDeviceDriver->GetDeviceCaps(FXDC_RENDER_CAPS); m_DeviceType = m_pDeviceDriver->GetDeviceType(); m_ClipBox = m_pDeviceDriver->GetClipBox(); } void CFX_RenderDevice::SaveState() { m_pDeviceDriver->SaveState(); } void CFX_RenderDevice::RestoreState(bool bKeepSaved) { if (m_pDeviceDriver) { m_pDeviceDriver->RestoreState(bKeepSaved); UpdateClipBox(); } } int CFX_RenderDevice::GetDeviceCaps(int caps_id) const { return m_pDeviceDriver->GetDeviceCaps(caps_id); } RetainPtr CFX_RenderDevice::GetBitmap() { return m_pBitmap; } RetainPtr CFX_RenderDevice::GetBitmap() const { return m_pBitmap; } void CFX_RenderDevice::SetBitmap(RetainPtr bitmap) { m_pBitmap = std::move(bitmap); } bool CFX_RenderDevice::CreateCompatibleBitmap( const RetainPtr& pDIB, int width, int height) const { return pDIB->Create( width, height, GetCreateCompatibleBitmapFormat(m_RenderCaps, /*use_argb_premul=*/true)); } void CFX_RenderDevice::SetBaseClip(const FX_RECT& rect) { m_pDeviceDriver->SetBaseClip(rect); } bool CFX_RenderDevice::SetClip_PathFill( const CFX_Path& path, const CFX_Matrix* pObject2Device, const CFX_FillRenderOptions& fill_options) { if (!m_pDeviceDriver->SetClip_PathFill(path, pObject2Device, fill_options)) return false; UpdateClipBox(); return true; } bool CFX_RenderDevice::SetClip_PathStroke( const CFX_Path& path, const CFX_Matrix* pObject2Device, const CFX_GraphStateData* pGraphState) { if (!m_pDeviceDriver->SetClip_PathStroke(path, pObject2Device, pGraphState)) return false; UpdateClipBox(); return true; } bool CFX_RenderDevice::SetClip_Rect(const FX_RECT& rect) { CFX_Path path; path.AppendRect(rect.left, rect.bottom, rect.right, rect.top); if (!SetClip_PathFill(path, nullptr, CFX_FillRenderOptions::WindingOptions())) { return false; } UpdateClipBox(); return true; } void CFX_RenderDevice::UpdateClipBox() { m_ClipBox = m_pDeviceDriver->GetClipBox(); } bool CFX_RenderDevice::DrawPath(const CFX_Path& path, const CFX_Matrix* pObject2Device, const CFX_GraphStateData* pGraphState, uint32_t fill_color, uint32_t stroke_color, const CFX_FillRenderOptions& fill_options) { const bool fill = fill_options.fill_type != CFX_FillRenderOptions::FillType::kNoFill; uint8_t fill_alpha = fill ? FXARGB_A(fill_color) : 0; uint8_t stroke_alpha = pGraphState ? FXARGB_A(stroke_color) : 0; pdfium::span points = path.GetPoints(); if (stroke_alpha == 0 && points.size() == 2) { CFX_PointF pos1 = points[0].m_Point; CFX_PointF pos2 = points[1].m_Point; if (pObject2Device) { pos1 = pObject2Device->Transform(pos1); pos2 = pObject2Device->Transform(pos2); } DrawCosmeticLine(pos1, pos2, fill_color, fill_options); return true; } if (stroke_alpha == 0 && !fill_options.rect_aa) { std::optional maybe_rect_f = path.GetRect(pObject2Device); if (maybe_rect_f.has_value()) { const CFX_FloatRect& rect_f = maybe_rect_f.value(); FX_RECT rect_i = rect_f.GetOuterRect(); // Depending on the top/bottom, left/right values of the rect it's // possible to overflow the Width() and Height() calculations. Check that // the rect will have valid dimension before continuing. if (!rect_i.Valid()) { return false; } int width = static_cast(ceil(rect_f.right - rect_f.left)); if (width < 1) { width = 1; if (rect_i.left == rect_i.right) { if (!pdfium::CheckAdd(rect_i.right, 1).AssignIfValid(&rect_i.right)) { return false; } } } int height = static_cast(ceil(rect_f.top - rect_f.bottom)); if (height < 1) { height = 1; if (rect_i.bottom == rect_i.top) { if (!pdfium::CheckAdd(rect_i.bottom, 1) .AssignIfValid(&rect_i.bottom)) { return false; } } } if (rect_i.Width() >= width + 1) { if (rect_f.left - static_cast(rect_i.left) > static_cast(rect_i.right) - rect_f.right) { if (!pdfium::CheckAdd(rect_i.left, 1).AssignIfValid(&rect_i.left)) { return false; } } else { if (!pdfium::CheckSub(rect_i.right, 1).AssignIfValid(&rect_i.right)) { return false; } } } if (rect_i.Height() >= height + 1) { if (rect_f.top - static_cast(rect_i.top) > static_cast(rect_i.bottom) - rect_f.bottom) { if (!pdfium::CheckAdd(rect_i.top, 1).AssignIfValid(&rect_i.top)) { return false; } } else { if (!pdfium::CheckSub(rect_i.bottom, 1) .AssignIfValid(&rect_i.bottom)) { return false; } } } if (FillRect(rect_i, fill_color)) { return true; } } } if (fill && stroke_alpha == 0 && !fill_options.stroke && !fill_options.text_mode) { bool adjust = !!m_pDeviceDriver->GetDriverType(); std::vector sub_path; for (size_t i = 0; i < points.size(); i++) { CFX_Path::Point::Type point_type = points[i].m_Type; if (point_type == CFX_Path::Point::Type::kMove) { // Process the existing sub path. DrawZeroAreaPath(sub_path, pObject2Device, adjust, fill_options.aliased_path, fill_color, fill_alpha); sub_path.clear(); // Start forming the next sub path. sub_path.push_back(points[i]); continue; } if (point_type == CFX_Path::Point::Type::kBezier) { sub_path.push_back(points[i]); sub_path.push_back(points[i + 1]); sub_path.push_back(points[i + 2]); i += 2; continue; } DCHECK_EQ(point_type, CFX_Path::Point::Type::kLine); sub_path.push_back(points[i]); } // Process the last sub paths. DrawZeroAreaPath(sub_path, pObject2Device, adjust, fill_options.aliased_path, fill_color, fill_alpha); } if (fill && fill_alpha && stroke_alpha < 0xff && fill_options.stroke) { #if defined(PDF_USE_SKIA) if (m_RenderCaps & FXRC_FILLSTROKE_PATH) { const bool using_skia = CFX_DefaultRenderDevice::UseSkiaRenderer(); if (using_skia) { m_pDeviceDriver->SetGroupKnockout(true); } bool draw_fillstroke_path_result = m_pDeviceDriver->DrawPath(path, pObject2Device, pGraphState, fill_color, stroke_color, fill_options); if (using_skia) { // Restore the group knockout status for `m_pDeviceDriver` after // finishing painting a fill-and-stroke path. m_pDeviceDriver->SetGroupKnockout(false); } return draw_fillstroke_path_result; } #endif // defined(PDF_USE_SKIA) return DrawFillStrokePath(path, pObject2Device, pGraphState, fill_color, stroke_color, fill_options); } return m_pDeviceDriver->DrawPath(path, pObject2Device, pGraphState, fill_color, stroke_color, fill_options); } // This can be removed once PDFium entirely relies on Skia bool CFX_RenderDevice::DrawFillStrokePath( const CFX_Path& path, const CFX_Matrix* pObject2Device, const CFX_GraphStateData* pGraphState, uint32_t fill_color, uint32_t stroke_color, const CFX_FillRenderOptions& fill_options) { if (!(m_RenderCaps & FXRC_GET_BITS)) return false; CFX_FloatRect bbox; if (pGraphState) { bbox = path.GetBoundingBoxForStrokePath(pGraphState->line_width(), pGraphState->miter_limit()); } else { bbox = path.GetBoundingBox(); } if (pObject2Device) bbox = pObject2Device->TransformRect(bbox); FX_RECT rect = bbox.GetOuterRect(); if (!rect.Valid()) return false; auto bitmap = pdfium::MakeRetain(); auto backdrop = pdfium::MakeRetain(); if (!CreateCompatibleBitmap(bitmap, rect.Width(), rect.Height())) return false; if (bitmap->IsAlphaFormat()) { backdrop->Copy(bitmap); } else { if (!m_pDeviceDriver->GetDIBits(bitmap, rect.left, rect.top)) return false; backdrop->Copy(bitmap); } CFX_DefaultRenderDevice bitmap_device; bitmap_device.AttachWithBackdropAndGroupKnockout(bitmap, std::move(backdrop), /*bGroupKnockout=*/true); CFX_Matrix matrix; if (pObject2Device) matrix = *pObject2Device; matrix.Translate(-rect.left, -rect.top); if (!bitmap_device.GetDeviceDriver()->DrawPath( path, &matrix, pGraphState, fill_color, stroke_color, fill_options)) { return false; } FX_RECT src_rect(0, 0, rect.Width(), rect.Height()); return m_pDeviceDriver->SetDIBits(std::move(bitmap), /*color=*/0, src_rect, rect.left, rect.top, BlendMode::kNormal); } bool CFX_RenderDevice::FillRect(const FX_RECT& rect, uint32_t fill_color) { if (m_pDeviceDriver->FillRect(rect, fill_color)) { return true; } if (!(m_RenderCaps & FXRC_GET_BITS)) { return false; } auto bitmap = pdfium::MakeRetain(); if (!CreateCompatibleBitmap(bitmap, rect.Width(), rect.Height())) { return false; } if (!m_pDeviceDriver->GetDIBits(bitmap, rect.left, rect.top)) { return false; } if (!bitmap->CompositeRect(0, 0, rect.Width(), rect.Height(), fill_color)) { return false; } FX_RECT src_rect(0, 0, rect.Width(), rect.Height()); m_pDeviceDriver->SetDIBits(std::move(bitmap), /*color=*/0, src_rect, rect.left, rect.top, BlendMode::kNormal); return true; } bool CFX_RenderDevice::DrawCosmeticLine( const CFX_PointF& ptMoveTo, const CFX_PointF& ptLineTo, uint32_t color, const CFX_FillRenderOptions& fill_options) { if ((color >= 0xff000000) && m_pDeviceDriver->DrawCosmeticLine(ptMoveTo, ptLineTo, color)) { return true; } CFX_GraphStateData graph_state; CFX_Path path; path.AppendPoint(ptMoveTo, CFX_Path::Point::Type::kMove); path.AppendPoint(ptLineTo, CFX_Path::Point::Type::kLine); return m_pDeviceDriver->DrawPath(path, nullptr, &graph_state, 0, color, fill_options); } void CFX_RenderDevice::DrawZeroAreaPath( const std::vector& path, const CFX_Matrix* matrix, bool adjust, bool aliased_path, uint32_t fill_color, uint8_t fill_alpha) { if (path.empty()) return; CFX_Path new_path; bool thin = false; bool set_identity = false; if (!GetZeroAreaPath(path, matrix, adjust, &new_path, &thin, &set_identity)) return; CFX_GraphStateData graph_state; graph_state.set_line_width(0.0f); uint32_t stroke_color = fill_color; if (thin) stroke_color = (((fill_alpha >> 2) << 24) | (stroke_color & 0x00ffffff)); const CFX_Matrix* new_matrix = nullptr; if (matrix && !matrix->IsIdentity() && !set_identity) new_matrix = matrix; CFX_FillRenderOptions path_options; path_options.zero_area = true; path_options.aliased_path = aliased_path; m_pDeviceDriver->DrawPath(new_path, new_matrix, &graph_state, 0, stroke_color, path_options); } bool CFX_RenderDevice::GetDIBits(RetainPtr bitmap, int left, int top) const { return (m_RenderCaps & FXRC_GET_BITS) && m_pDeviceDriver->GetDIBits(std::move(bitmap), left, top); } bool CFX_RenderDevice::SetDIBits(RetainPtr bitmap, int left, int top) { return SetDIBitsWithBlend(std::move(bitmap), left, top, BlendMode::kNormal); } RetainPtr CFX_RenderDevice::GetBackDrop() const { return m_pDeviceDriver->GetBackDrop(); } bool CFX_RenderDevice::SetDIBitsWithBlend(RetainPtr bitmap, int left, int top, BlendMode blend_mode) { DCHECK(!bitmap->IsMaskFormat()); FX_RECT dest_rect(left, top, left + bitmap->GetWidth(), top + bitmap->GetHeight()); dest_rect.Intersect(m_ClipBox); if (dest_rect.IsEmpty()) return true; FX_RECT src_rect(dest_rect.left - left, dest_rect.top - top, dest_rect.left - left + dest_rect.Width(), dest_rect.top - top + dest_rect.Height()); if ((blend_mode == BlendMode::kNormal || (m_RenderCaps & FXRC_BLEND_MODE)) && (!bitmap->IsAlphaFormat() || (m_RenderCaps & FXRC_ALPHA_IMAGE))) { return m_pDeviceDriver->SetDIBits(std::move(bitmap), /*color=*/0, src_rect, dest_rect.left, dest_rect.top, blend_mode); } if (!(m_RenderCaps & FXRC_GET_BITS)) return false; int bg_pixel_width = dest_rect.Width(); int bg_pixel_height = dest_rect.Height(); auto background = pdfium::MakeRetain(); if (!background->Create(bg_pixel_width, bg_pixel_height, FXDIB_Format::kBgrx)) { return false; } if (!m_pDeviceDriver->GetDIBits(background, dest_rect.left, dest_rect.top)) return false; if (!background->CompositeBitmap(0, 0, bg_pixel_width, bg_pixel_height, std::move(bitmap), src_rect.left, src_rect.top, blend_mode, nullptr, false)) { return false; } FX_RECT rect(0, 0, bg_pixel_width, bg_pixel_height); return m_pDeviceDriver->SetDIBits(std::move(background), /*color=*/0, rect, dest_rect.left, dest_rect.top, BlendMode::kNormal); } bool CFX_RenderDevice::StretchDIBits(RetainPtr bitmap, int left, int top, int dest_width, int dest_height) { return StretchDIBitsWithFlagsAndBlend( std::move(bitmap), left, top, dest_width, dest_height, FXDIB_ResampleOptions(), BlendMode::kNormal); } bool CFX_RenderDevice::StretchDIBitsWithFlagsAndBlend( RetainPtr bitmap, int left, int top, int dest_width, int dest_height, const FXDIB_ResampleOptions& options, BlendMode blend_mode) { FX_RECT dest_rect(left, top, left + dest_width, top + dest_height); FX_RECT clip_box = m_ClipBox; clip_box.Intersect(dest_rect); return clip_box.IsEmpty() || m_pDeviceDriver->StretchDIBits( std::move(bitmap), 0, left, top, dest_width, dest_height, &clip_box, options, blend_mode); } bool CFX_RenderDevice::SetBitMask(RetainPtr bitmap, int left, int top, uint32_t argb) { FX_RECT src_rect(0, 0, bitmap->GetWidth(), bitmap->GetHeight()); return m_pDeviceDriver->SetDIBits(std::move(bitmap), argb, src_rect, left, top, BlendMode::kNormal); } bool CFX_RenderDevice::StretchBitMask(RetainPtr bitmap, int left, int top, int dest_width, int dest_height, uint32_t color) { return StretchBitMaskWithFlags(std::move(bitmap), left, top, dest_width, dest_height, color, FXDIB_ResampleOptions()); } bool CFX_RenderDevice::StretchBitMaskWithFlags( RetainPtr bitmap, int left, int top, int dest_width, int dest_height, uint32_t argb, const FXDIB_ResampleOptions& options) { FX_RECT dest_rect(left, top, left + dest_width, top + dest_height); FX_RECT clip_box = m_ClipBox; clip_box.Intersect(dest_rect); return m_pDeviceDriver->StretchDIBits(std::move(bitmap), argb, left, top, dest_width, dest_height, &clip_box, options, BlendMode::kNormal); } RenderDeviceDriverIface::StartResult CFX_RenderDevice::StartDIBits( RetainPtr bitmap, float alpha, uint32_t argb, const CFX_Matrix& matrix, const FXDIB_ResampleOptions& options) { return StartDIBitsWithBlend(std::move(bitmap), alpha, argb, matrix, options, BlendMode::kNormal); } RenderDeviceDriverIface::StartResult CFX_RenderDevice::StartDIBitsWithBlend( RetainPtr bitmap, float alpha, uint32_t argb, const CFX_Matrix& matrix, const FXDIB_ResampleOptions& options, BlendMode blend_mode) { return m_pDeviceDriver->StartDIBits(std::move(bitmap), alpha, argb, matrix, options, blend_mode); } bool CFX_RenderDevice::ContinueDIBits(CFX_AggImageRenderer* handle, PauseIndicatorIface* pPause) { return m_pDeviceDriver->ContinueDIBits(handle, pPause); } #if defined(PDF_USE_SKIA) bool CFX_RenderDevice::DrawShading(const CPDF_ShadingPattern& pattern, const CFX_Matrix& matrix, const FX_RECT& clip_rect, int alpha) { return m_pDeviceDriver->DrawShading(pattern, matrix, clip_rect, alpha); } bool CFX_RenderDevice::SetBitsWithMask(RetainPtr bitmap, RetainPtr mask, int left, int top, float alpha, BlendMode blend_type) { return m_pDeviceDriver->SetBitsWithMask(std::move(bitmap), std::move(mask), left, top, alpha, blend_type); } void CFX_RenderDevice::SyncInternalBitmaps() { m_pDeviceDriver->SyncInternalBitmaps(); } #endif // defined(PDF_USE_SKIA) bool CFX_RenderDevice::DrawNormalText(pdfium::span pCharPos, CFX_Font* pFont, float font_size, const CFX_Matrix& mtText2Device, uint32_t fill_color, const CFX_TextRenderOptions& options) { // `anti_alias` and `normalize` don't affect Skia rendering. int anti_alias = FT_RENDER_MODE_MONO; bool normalize = false; const bool is_text_smooth = options.IsSmooth(); // |text_options| has the potential to affect all derived classes of // RenderDeviceDriverIface. But now it only affects Skia rendering. CFX_TextRenderOptions text_options(options); if (is_text_smooth) { if (GetDeviceType() == DeviceType::kDisplay && m_bpp > 1) { if (!CFX_GEModule::Get()->GetFontMgr()->FTLibrarySupportsHinting()) { // Some Freetype implementations (like the one packaged with Fedora) do // not support hinting due to patents 6219025, 6239783, 6307566, // 6225973, 6243070, 6393145, 6421054, 6282327, and 6624828; the latest // one expires 10/7/19. This makes LCD anti-aliasing very ugly, so we // instead fall back on NORMAL anti-aliasing. anti_alias = FT_RENDER_MODE_NORMAL; if (CFX_DefaultRenderDevice::UseSkiaRenderer()) { // Since |anti_alias| doesn't affect Skia rendering, and Skia only // follows strictly to the options provided by |text_options|, we need // to update |text_options| so that Skia falls back on normal // anti-aliasing as well. text_options.aliasing_type = CFX_TextRenderOptions::kAntiAliasing; } } else if ((m_RenderCaps & FXRC_ALPHA_OUTPUT)) { // Whether Skia uses LCD optimization should strictly follow the // rendering options provided by |text_options|. No change needs to be // done for |text_options| here. anti_alias = FT_RENDER_MODE_LCD; normalize = true; } else if (m_bpp < 16) { // This case doesn't apply to Skia since Skia always have |m_bpp| = 32. anti_alias = FT_RENDER_MODE_NORMAL; } else { // Whether Skia uses LCD optimization should strictly follow the // rendering options provided by |text_options|. No change needs to be // done for |text_options| here. anti_alias = FT_RENDER_MODE_LCD; normalize = !pFont->GetFaceRec() || options.aliasing_type != CFX_TextRenderOptions::kLcd; } } } #if BUILDFLAG(IS_WIN) const bool is_printer = GetDeviceType() == DeviceType::kPrinter; bool try_native_text = true; #else constexpr bool is_printer = false; constexpr bool try_native_text = true; #endif #if BUILDFLAG(IS_WIN) if (GetDeviceType() == DeviceType::kPrinter) { if (ShouldDrawDeviceText(pFont, options) && m_pDeviceDriver->DrawDeviceText(pCharPos, pFont, mtText2Device, font_size, fill_color, text_options)) { return true; } if (FXARGB_A(fill_color) < 255) { return false; } try_native_text = false; } #endif if (try_native_text && options.native_text) { if (ShouldDrawDeviceText(pFont, options) && m_pDeviceDriver->DrawDeviceText(pCharPos, pFont, mtText2Device, font_size, fill_color, text_options)) { return true; } } CFX_Matrix char2device = mtText2Device; CFX_Matrix text2Device = mtText2Device; char2device.Scale(font_size, -font_size); if (fabs(char2device.a) + fabs(char2device.b) > 50 * 1.0f || is_printer) { if (pFont->GetFaceRec()) { CFX_FillRenderOptions path_options; path_options.aliased_path = !is_text_smooth; return DrawTextPath(pCharPos, pFont, font_size, mtText2Device, nullptr, nullptr, fill_color, 0, nullptr, path_options); } } std::vector glyphs(pCharPos.size()); for (size_t i = 0; i < glyphs.size(); ++i) { TextGlyphPos& glyph = glyphs[i]; const TextCharPos& charpos = pCharPos[i]; glyph.m_fDeviceOrigin = text2Device.Transform(charpos.m_Origin); if (anti_alias < FT_RENDER_MODE_LCD) glyph.m_Origin.x = FXSYS_roundf(glyph.m_fDeviceOrigin.x); else glyph.m_Origin.x = static_cast(floor(glyph.m_fDeviceOrigin.x)); glyph.m_Origin.y = FXSYS_roundf(glyph.m_fDeviceOrigin.y); CFX_Matrix matrix = charpos.GetEffectiveMatrix(char2device); glyph.m_pGlyph = pFont->LoadGlyphBitmap( charpos.m_GlyphIndex, charpos.m_bFontStyle, matrix, charpos.m_FontCharWidth, anti_alias, &text_options); } if (anti_alias < FT_RENDER_MODE_LCD && glyphs.size() > 1) AdjustGlyphSpace(&glyphs); FX_RECT bmp_rect = GetGlyphsBBox(glyphs, anti_alias); bmp_rect.Intersect(m_ClipBox); if (bmp_rect.IsEmpty()) return true; int pixel_width = bmp_rect.Width(); int pixel_height = bmp_rect.Height(); int pixel_left = bmp_rect.left; int pixel_top = bmp_rect.top; if (anti_alias == FT_RENDER_MODE_MONO) { auto bitmap = pdfium::MakeRetain(); if (!bitmap->Create(pixel_width, pixel_height, FXDIB_Format::k1bppMask)) return false; for (const TextGlyphPos& glyph : glyphs) { if (!glyph.m_pGlyph) continue; std::optional point = glyph.GetOrigin({pixel_left, pixel_top}); if (!point.has_value()) continue; const RetainPtr& pGlyph = glyph.m_pGlyph->GetBitmap(); bitmap->CompositeOneBPPMask(point.value().x, point.value().y, pGlyph->GetWidth(), pGlyph->GetHeight(), pGlyph, 0, 0); } return SetBitMask(std::move(bitmap), bmp_rect.left, bmp_rect.top, fill_color); } auto bitmap = pdfium::MakeRetain(); if (m_bpp == 8) { if (!bitmap->Create(pixel_width, pixel_height, FXDIB_Format::k8bppMask)) return false; } else { // TODO(crbug.com/42271020): Switch to CreateCompatibleBitmap() once // DrawNormalTextHelper() supports `FXDIB_Format::kBgraPremul`. if (!bitmap->Create(pixel_width, pixel_height, GetCreateCompatibleBitmapFormat( m_RenderCaps, /*use_argb_premul=*/false))) { return false; } } if (!bitmap->IsAlphaFormat() && !bitmap->IsMaskFormat()) { bitmap->Clear(0xFFFFFFFF); if (!GetDIBits(bitmap, bmp_rect.left, bmp_rect.top)) return false; } int dest_width = pixel_width; FX_BGRA_STRUCT bgra; if (anti_alias == FT_RENDER_MODE_LCD) { bgra = ArgbToBGRAStruct(fill_color); } for (const TextGlyphPos& glyph : glyphs) { if (!glyph.m_pGlyph) continue; std::optional point = glyph.GetOrigin({pixel_left, pixel_top}); if (!point.has_value()) continue; const RetainPtr& pGlyph = glyph.m_pGlyph->GetBitmap(); int ncols = pGlyph->GetWidth(); int nrows = pGlyph->GetHeight(); if (anti_alias == FT_RENDER_MODE_NORMAL) { if (!bitmap->CompositeMask(point.value().x, point.value().y, ncols, nrows, pGlyph, fill_color, 0, 0, BlendMode::kNormal, nullptr, false)) { return false; } continue; } ncols /= 3; int x_subpixel = static_cast(glyph.m_fDeviceOrigin.x * 3) % 3; int start_col = std::max(point->x, 0); FX_SAFE_INT32 end_col_safe = point->x; end_col_safe += ncols; if (!end_col_safe.IsValid()) continue; int end_col = std::min(end_col_safe.ValueOrDie(), dest_width); if (start_col >= end_col) continue; DrawNormalTextHelper(bitmap, pGlyph, nrows, point->x, point->y, start_col, end_col, normalize, x_subpixel, bgra); } if (bitmap->IsMaskFormat()) { SetBitMask(std::move(bitmap), bmp_rect.left, bmp_rect.top, fill_color); } else { SetDIBits(std::move(bitmap), bmp_rect.left, bmp_rect.top); } return true; } bool CFX_RenderDevice::DrawTextPath(pdfium::span pCharPos, CFX_Font* pFont, float font_size, const CFX_Matrix& mtText2User, const CFX_Matrix* pUser2Device, const CFX_GraphStateData* pGraphState, uint32_t fill_color, FX_ARGB stroke_color, CFX_Path* pClippingPath, const CFX_FillRenderOptions& fill_options) { for (const auto& charpos : pCharPos) { const CFX_Path* pPath = pFont->LoadGlyphPath(charpos.m_GlyphIndex, charpos.m_FontCharWidth); if (!pPath) continue; CFX_Matrix matrix(font_size, 0, 0, font_size, charpos.m_Origin.x, charpos.m_Origin.y); matrix = charpos.GetEffectiveMatrix(matrix); matrix.Concat(mtText2User); CFX_Path transformed_path(*pPath); transformed_path.Transform(matrix); if (fill_color || stroke_color) { CFX_FillRenderOptions options(fill_options); if (fill_color) { options.fill_type = CFX_FillRenderOptions::FillType::kWinding; } options.text_mode = true; if (!DrawPath(transformed_path, pUser2Device, pGraphState, fill_color, stroke_color, options)) { return false; } } if (pClippingPath) { pClippingPath->Append(transformed_path, pUser2Device); } } return true; } void CFX_RenderDevice::DrawFillRect(const CFX_Matrix* pUser2Device, const CFX_FloatRect& rect, const FX_COLORREF& color) { CFX_Path path; path.AppendFloatRect(rect); DrawPath(path, pUser2Device, nullptr, color, 0, CFX_FillRenderOptions::WindingOptions()); } void CFX_RenderDevice::DrawFillArea(const CFX_Matrix& mtUser2Device, const std::vector& points, const FX_COLORREF& color) { DCHECK(!points.empty()); CFX_Path path; path.AppendPoint(points[0], CFX_Path::Point::Type::kMove); for (size_t i = 1; i < points.size(); ++i) path.AppendPoint(points[i], CFX_Path::Point::Type::kLine); DrawPath(path, &mtUser2Device, nullptr, color, 0, CFX_FillRenderOptions::EvenOddOptions()); } void CFX_RenderDevice::DrawStrokeRect(const CFX_Matrix& mtUser2Device, const CFX_FloatRect& rect, const FX_COLORREF& color, float fWidth) { CFX_GraphStateData gsd; gsd.set_line_width(fWidth); CFX_Path path; path.AppendFloatRect(rect); DrawPath(path, &mtUser2Device, &gsd, 0, color, CFX_FillRenderOptions::EvenOddOptions()); } void CFX_RenderDevice::DrawStrokeLine(const CFX_Matrix* pUser2Device, const CFX_PointF& ptMoveTo, const CFX_PointF& ptLineTo, const FX_COLORREF& color, float fWidth) { CFX_Path path; path.AppendPoint(ptMoveTo, CFX_Path::Point::Type::kMove); path.AppendPoint(ptLineTo, CFX_Path::Point::Type::kLine); CFX_GraphStateData gsd; gsd.set_line_width(fWidth); DrawPath(path, pUser2Device, &gsd, 0, color, CFX_FillRenderOptions::EvenOddOptions()); } void CFX_RenderDevice::DrawFillRect(const CFX_Matrix* pUser2Device, const CFX_FloatRect& rect, const CFX_Color& color, int32_t nTransparency) { DrawFillRect(pUser2Device, rect, color.ToFXColor(nTransparency)); } void CFX_RenderDevice::DrawShadow(const CFX_Matrix& mtUser2Device, const CFX_FloatRect& rect, int32_t nTransparency, int32_t nStartGray, int32_t nEndGray) { constexpr float kBorder = 0.5f; constexpr float kSegmentWidth = 1.0f; constexpr float kLineWidth = 1.5f; float fStepGray = (nEndGray - nStartGray) / rect.Height(); CFX_PointF start(rect.left, 0); CFX_PointF end(rect.right, 0); for (float fy = rect.bottom + kBorder; fy <= rect.top - kBorder; fy += kSegmentWidth) { start.y = fy; end.y = fy; int nGray = nStartGray + static_cast(fStepGray * (fy - rect.bottom)); FX_ARGB color = ArgbEncode(nTransparency, nGray, nGray, nGray); DrawStrokeLine(&mtUser2Device, start, end, color, kLineWidth); } } void CFX_RenderDevice::DrawBorder(const CFX_Matrix* pUser2Device, const CFX_FloatRect& rect, float fWidth, const CFX_Color& color, const CFX_Color& crLeftTop, const CFX_Color& crRightBottom, BorderStyle nStyle, int32_t nTransparency) { if (fWidth <= 0.0f) return; const float fLeft = rect.left; const float fRight = rect.right; const float fTop = rect.top; const float fBottom = rect.bottom; const float fHalfWidth = fWidth / 2.0f; switch (nStyle) { case BorderStyle::kSolid: { CFX_Path path; path.AppendRect(fLeft, fBottom, fRight, fTop); path.AppendRect(fLeft + fWidth, fBottom + fWidth, fRight - fWidth, fTop - fWidth); DrawPath(path, pUser2Device, nullptr, color.ToFXColor(nTransparency), 0, CFX_FillRenderOptions::EvenOddOptions()); break; } case BorderStyle::kDash: { CFX_GraphStateData gsd; gsd.set_dash_array({3.0f, 3.0f}); gsd.set_line_width(fWidth); CFX_Path path; path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kMove); path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kLine); path.AppendPoint(CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kLine); path.AppendPoint(CFX_PointF(fRight - fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); path.AppendPoint(CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); DrawPath(path, pUser2Device, &gsd, 0, color.ToFXColor(nTransparency), CFX_FillRenderOptions::WindingOptions()); break; } case BorderStyle::kBeveled: case BorderStyle::kInset: { CFX_GraphStateData gsd; gsd.set_line_width(fHalfWidth); CFX_Path path_left_top; path_left_top.AppendPoint( CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kMove); path_left_top.AppendPoint( CFX_PointF(fLeft + fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kLine); path_left_top.AppendPoint( CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kLine); path_left_top.AppendPoint(CFX_PointF(fRight - fWidth, fTop - fWidth), CFX_Path::Point::Type::kLine); path_left_top.AppendPoint(CFX_PointF(fLeft + fWidth, fTop - fWidth), CFX_Path::Point::Type::kLine); path_left_top.AppendPoint(CFX_PointF(fLeft + fWidth, fBottom + fWidth), CFX_Path::Point::Type::kLine); path_left_top.AppendPoint( CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); DrawPath(path_left_top, pUser2Device, &gsd, crLeftTop.ToFXColor(nTransparency), 0, CFX_FillRenderOptions::EvenOddOptions()); CFX_Path path_right_bottom; path_right_bottom.AppendPoint( CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kMove); path_right_bottom.AppendPoint( CFX_PointF(fRight - fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); path_right_bottom.AppendPoint( CFX_PointF(fLeft + fHalfWidth, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); path_right_bottom.AppendPoint( CFX_PointF(fLeft + fWidth, fBottom + fWidth), CFX_Path::Point::Type::kLine); path_right_bottom.AppendPoint( CFX_PointF(fRight - fWidth, fBottom + fWidth), CFX_Path::Point::Type::kLine); path_right_bottom.AppendPoint(CFX_PointF(fRight - fWidth, fTop - fWidth), CFX_Path::Point::Type::kLine); path_right_bottom.AppendPoint( CFX_PointF(fRight - fHalfWidth, fTop - fHalfWidth), CFX_Path::Point::Type::kLine); DrawPath(path_right_bottom, pUser2Device, &gsd, crRightBottom.ToFXColor(nTransparency), 0, CFX_FillRenderOptions::EvenOddOptions()); CFX_Path path; path.AppendRect(fLeft, fBottom, fRight, fTop); path.AppendRect(fLeft + fHalfWidth, fBottom + fHalfWidth, fRight - fHalfWidth, fTop - fHalfWidth); DrawPath(path, pUser2Device, &gsd, color.ToFXColor(nTransparency), 0, CFX_FillRenderOptions::EvenOddOptions()); break; } case BorderStyle::kUnderline: { CFX_GraphStateData gsd; gsd.set_line_width(fWidth); CFX_Path path; path.AppendPoint(CFX_PointF(fLeft, fBottom + fHalfWidth), CFX_Path::Point::Type::kMove); path.AppendPoint(CFX_PointF(fRight, fBottom + fHalfWidth), CFX_Path::Point::Type::kLine); DrawPath(path, pUser2Device, &gsd, 0, color.ToFXColor(nTransparency), CFX_FillRenderOptions::EvenOddOptions()); break; } } } bool CFX_RenderDevice::MultiplyAlpha(float alpha) { return m_pDeviceDriver->MultiplyAlpha(alpha); } bool CFX_RenderDevice::MultiplyAlphaMask(RetainPtr mask) { return m_pDeviceDriver->MultiplyAlphaMask(std::move(mask)); } CFX_RenderDevice::StateRestorer::StateRestorer(CFX_RenderDevice* pDevice) : m_pDevice(pDevice) { m_pDevice->SaveState(); } CFX_RenderDevice::StateRestorer::~StateRestorer() { m_pDevice->RestoreState(false); }