/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ #define SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_ #include #include #include #include #include #include #include "perfetto/base/compiler.h" #include "perfetto/base/logging.h" #include "perfetto/public/compiler.h" namespace perfetto { namespace protos::pbzero { class SerializedColumn_BitVector; class SerializedColumn_BitVector_Decoder; } // namespace protos::pbzero namespace trace_processor { namespace internal { class BaseIterator; class SetBitsIterator; } // namespace internal // A BitVector which compactly stores a vector of bools using a single bit // for each bool. class BitVector { public: static constexpr uint32_t kBitsInWord = 64; // Builder class which allows efficiently creating a BitVector by appending // words. Using this class is generally far more efficient than trying to set // bits directly in a BitVector or even appending one bit at a time. class Builder { public: // Creates a Builder for building a BitVector of |size| bits. explicit Builder(uint32_t size, uint32_t skip = 0) : words_(BlockCount(size) * Block::kWords), global_bit_offset_(skip), size_(size), skipped_blocks_(skip / Block::kBits) { PERFETTO_CHECK(global_bit_offset_ <= size_); } // Appends a single bit to the builder. // Note: |AppendWord| is far more efficient than this method so should be // preferred. void Append(bool value) { PERFETTO_DCHECK(global_bit_offset_ < size_); words_[global_bit_offset_ / BitWord::kBits] |= static_cast(value) << global_bit_offset_ % BitWord::kBits; global_bit_offset_++; } // Appends a whole word to the Builder. Builder has to end on a word // boundary before calling this function. void AppendWord(uint64_t word) { PERFETTO_DCHECK(global_bit_offset_ % BitWord::kBits == 0); PERFETTO_DCHECK(global_bit_offset_ + BitWord::kBits <= size_); words_[global_bit_offset_ / BitWord::kBits] = word; global_bit_offset_ += BitWord::kBits; } // Creates a BitVector from this Builder. BitVector Build() && { if (size_ == 0) return {}; std::vector counts(BlockCount(size_)); PERFETTO_CHECK(skipped_blocks_ <= counts.size()); for (uint32_t i = skipped_blocks_ + 1; i < counts.size(); ++i) { counts[i] = counts[i - 1] + ConstBlock(&words_[Block::kWords * (i - 1)]).CountSetBits(); } return {std::move(words_), std::move(counts), size_}; } // Returns the number of bits which are in complete words which can be // appended to this builder before having to fallback to |Append| due to // being close to the end. uint32_t BitsInCompleteWordsUntilFull() const { uint32_t next_word = WordCount(global_bit_offset_); uint32_t end_word = WordFloor(size_); uint32_t complete_words = next_word < end_word ? end_word - next_word : 0; return complete_words * BitWord::kBits; } // Returns the number of bits which should be appended using |Append| either // hitting a word boundary (and thus able to use |AppendWord|) or until the // BitVector is full (i.e. no more Appends should happen), whichever would // happen first. uint32_t BitsUntilWordBoundaryOrFull() const { if (global_bit_offset_ == 0 && size_ < BitWord::kBits) { return size_; } uint8_t word_bit_offset = global_bit_offset_ % BitWord::kBits; return std::min(BitsUntilFull(), (BitWord::kBits - word_bit_offset) % BitWord::kBits); } // Returns the number of bits which should be appended using |Append| before // hitting a word boundary (and thus able to use |AppendWord|) or until the // BitVector is full (i.e. no more Appends should happen). uint32_t BitsUntilFull() const { return size_ - global_bit_offset_; } private: std::vector words_; uint32_t global_bit_offset_ = 0; uint32_t size_ = 0; uint32_t skipped_blocks_ = 0; }; // Creates an empty BitVector. BitVector(); BitVector(std::initializer_list init); // Creates a BitVector of |count| size filled with |value|. explicit BitVector(uint32_t count, bool value = false); BitVector(const BitVector&) = delete; BitVector& operator=(const BitVector&) = delete; // Enable moving BitVectors as they have no unmovable state. BitVector(BitVector&&) noexcept = default; BitVector& operator=(BitVector&&) = default; // Create a copy of the BitVector. BitVector Copy() const; // Bitwise Not of the BitVector. void Not(); // Bitwise Or of the BitVector. void Or(const BitVector&); // Bitwise And of the BitVector. void And(const BitVector&); // Returns the size of the BitVector. uint32_t size() const { return static_cast(size_); } // Returns whether the bit at |idx| is set. bool IsSet(uint32_t idx) const { PERFETTO_DCHECK(idx < size()); return ConstBitWord(&words_[WordFloor(idx)]).IsSet(idx % BitWord::kBits); } // Returns the number of set bits in the BitVector. uint32_t CountSetBits() const { return CountSetBits(size()); } // Returns the number of set bits between the start of the BitVector // (inclusive) and the index |end| (exclusive). uint32_t CountSetBits(uint32_t end) const { if (end == 0) return 0; // Although the external interface we present uses an exclusive |end|, // internally it's a lot nicer to work with an inclusive |end| (mainly // because we get block rollovers on exclusive ends which means we need // to have if checks to ensure we don't overflow the number of blocks). Address addr = IndexToAddress(end - 1); // Add the number of set bits until the start of the block to the number // of set bits until the end address inside the block. return counts_[addr.block_idx] + ConstBlockFromIndex(addr.block_idx).CountSetBits(addr.block_offset); } // Returns the index of the |n|th set bit. Should only be called with |n| < // CountSetBits(). uint32_t IndexOfNthSet(uint32_t n) const { PERFETTO_DCHECK(n < CountSetBits()); // First search for the block which, up until the start of it, has more than // n bits set. Note that this should never return |counts.begin()| as // that should always be 0. // TODO(lalitm): investigate whether we can make this faster with small // binary search followed by a linear search instead of binary searching the // full way. auto it = std::upper_bound(counts_.begin(), counts_.end(), n); PERFETTO_DCHECK(it != counts_.begin()); // Go back one block to find the block which has the bit we are looking for. uint32_t block_idx = static_cast(std::distance(counts_.begin(), it) - 1); // Figure out how many set bits forward we are looking inside the block // by taking away the number of bits at the start of the block from n. uint32_t set_in_block = n - counts_[block_idx]; // Compute the address of the bit in the block then convert the full // address back to an index. BlockOffset block_offset = ConstBlockFromIndex(block_idx).IndexOfNthSet(set_in_block); return AddressToIndex(Address{block_idx, block_offset}); } // Sets the bit at index |idx| to true and returns the previous value. bool Set(uint32_t idx) { // Set the bit to the correct value inside the block but store the old // bit to help fix the counts. auto addr = IndexToAddress(idx); bool old_value = ConstBlockFromIndex(addr.block_idx).IsSet(addr.block_offset); // If the old value was unset, set the bit and add one to the count. if (PERFETTO_LIKELY(!old_value)) { BlockFromIndex(addr.block_idx).Set(addr.block_offset); auto size = static_cast(counts_.size()); for (uint32_t i = addr.block_idx + 1; i < size; ++i) { counts_[i]++; } } return old_value; } // Sets the bit at index |idx| to false. void Clear(uint32_t idx) { // Set the bit to the correct value inside the block but store the old // bit to help fix the counts. auto addr = IndexToAddress(idx); bool old_value = ConstBlockFromIndex(addr.block_idx).IsSet(addr.block_offset); // If the old value was set, clear the bit and subtract one from all the // counts. if (PERFETTO_LIKELY(old_value)) { BlockFromIndex(addr.block_idx).Clear(addr.block_offset); auto size = static_cast(counts_.size()); for (uint32_t i = addr.block_idx + 1; i < size; ++i) { counts_[i]--; } } } // Appends true to the BitVector. void AppendTrue() { AppendFalse(); Address addr = IndexToAddress(size() - 1); BlockFromIndex(addr.block_idx).Set(addr.block_offset); } // Appends false to the BitVector. void AppendFalse() { Address addr = IndexToAddress(size_); uint32_t old_blocks_size = BlockCount(); uint32_t new_blocks_size = addr.block_idx + 1; if (PERFETTO_UNLIKELY(new_blocks_size > old_blocks_size)) { uint32_t t = CountSetBits(); words_.resize(words_.size() + Block::kWords); counts_.emplace_back(t); } size_++; // We don't need to clear the bit as we ensure that anything after // size_ is always set to false. } // Resizes the BitVector to the given |size|. // Truncates the BitVector if |size| < |size()| or fills the new space with // |filler| if |size| > |size()|. Calling this method is a noop if |size| == // |size()|. void Resize(uint32_t new_size, bool filler = false); // Creates a BitVector of size |end| with the bits between |start| and |end| // filled by calling the filler function |f(index of bit)|. // // As an example, suppose RangeForTesting(3, 7, [](x) { return x < 5 }). This // would result in the following BitVector: [0 0 0 1 1 0 0] template PERFETTO_WARN_UNUSED_RESULT static BitVector RangeForTesting(uint32_t start, uint32_t end, Filler f) { // Compute the block index and BitVector index where we start and end // working one block at a time. uint32_t start_fast_block = BlockCount(start); uint32_t start_fast_idx = BlockToIndex(start_fast_block); BitVector bv(start, false); // Minimum value of start_fast_idx is numer of bits in block, so we need to // seperate calculation for shorter ranges. if (start_fast_idx > end) { for (uint32_t i = start; i < end; ++i) { bv.Append(f(i)); } return bv; } uint32_t end_fast_block = BlockFloor(end); uint32_t end_fast_idx = BlockToIndex(end_fast_block); // Fill up to |start_fast_index| with values from the filler. for (uint32_t i = start; i < start_fast_idx; ++i) { bv.Append(f(i)); } // Assert words_ vector is full and size_ is properly calculated. PERFETTO_DCHECK(bv.words_.size() % Block::kWords == 0); PERFETTO_DCHECK(bv.words_.size() * BitWord::kBits == bv.size_); // At this point we can work one block at a time. bv.words_.resize(bv.words_.size() + Block::kWords * (end_fast_block - start_fast_block)); for (uint32_t i = start_fast_block; i < end_fast_block; ++i) { uint64_t* block_start_word = &bv.words_[i * Block::kWords]; Block(block_start_word).FromFiller(bv.size_, f); bv.counts_.emplace_back(bv.CountSetBits()); bv.size_ += Block::kBits; } // Add the last few elements to finish up to |end|. for (uint32_t i = end_fast_idx; i < end; ++i) { bv.Append(f(i)); } return bv; } // Creates BitVector from a vector of sorted indices. Set bits in the // resulting BitVector are values from the index vector. // Note for callers - the passed index vector has to: // - be sorted // - have first element >= 0 // - last value smaller than numeric limit of uint32_t. PERFETTO_WARN_UNUSED_RESULT static BitVector FromSortedIndexVector( const std::vector&); // Creates BitVector from a vector of unsorted indices. Set bits in the // resulting BitVector are values from the index vector. PERFETTO_WARN_UNUSED_RESULT static BitVector FromUnsortedIndexVector( const std::vector&); // Creates a BitVector of size `min(range_end, size())` with bits between // |start| and |end| filled with corresponding bits from |this| BitVector. PERFETTO_WARN_UNUSED_RESULT BitVector IntersectRange(uint32_t range_start, uint32_t range_end) const; // Requests the removal of unused capacity. // Matches the semantics of std::vector::shrink_to_fit. void ShrinkToFit() { words_.shrink_to_fit(); counts_.shrink_to_fit(); } // Updates the ith set bit of this BitVector with the value of // |other.IsSet(i)|. // // This is the best way to batch update all the bits which are set; for // example when filtering rows, we want to filter all rows which are currently // included but ignore rows which have already been excluded. // // For example suppose the following: // this: 1 1 0 0 1 0 1 // other: 0 1 1 0 // This will change this to the following: // this: 0 1 0 0 1 0 0 void UpdateSetBits(const BitVector& other); // For each set bit position in |other|, Selects the value of each bit in // |this| and stores them contiguously in |this|. // // Precondition: |this.size()| <= |other.size()|. // // For example suppose the following: // this: 1 1 0 0 1 0 1 // other: 0 1 0 1 0 1 0 0 1 0 // |this| will change this to the following: // this: 1 0 0 void SelectBits(const BitVector& other); // Returns the approximate cost (in bytes) of storing a BitVector with size // |n|. This can be used to make decisions about whether using a BitVector is // worthwhile. // This cost should not be treated as exact - it just gives an indication of // the memory needed. static constexpr uint32_t ApproxBytesCost(uint32_t n) { // The two main things making up a BitVector is the cost of the blocks of // bits and the cost of the counts vector. return BlockCount(n) * Block::kBits + BlockCount(n) * sizeof(uint32_t); } // Returns a vector containing the indices of all the set bits // in the BitVector. std::vector GetSetBitIndices() const; // Serialize internals of BitVector to proto. void Serialize(protos::pbzero::SerializedColumn_BitVector* msg) const; // Deserialize BitVector from proto. void Deserialize( const protos::pbzero::SerializedColumn_BitVector_Decoder& bv_msg); private: using SetBitsIterator = internal::SetBitsIterator; friend class internal::BaseIterator; friend class internal::SetBitsIterator; // Represents the offset of a bit within a block. struct BlockOffset { uint16_t word_idx; uint16_t bit_idx; }; // Represents the address of a bit within the BitVector. struct Address { uint32_t block_idx; BlockOffset block_offset; }; // Represents the smallest collection of bits we can refer to as // one unit. // // Currently, this is implemented as a 64 bit integer as this is the // largest type which we can assume to be present on all platforms. class BitWord { public: static constexpr uint32_t kBits = 64; explicit BitWord(uint64_t* word) : word_(word) {} // Bitwise ors the given |mask| to the current value. void Or(uint64_t mask) { *word_ |= mask; } // Bitwise ands the given |mask| to the current value. void And(uint64_t mask) { *word_ &= mask; } // Bitwise not. void Not() { *word_ = ~(*word_); } // Sets the bit at the given index to true. void Set(uint32_t idx) { PERFETTO_DCHECK(idx < kBits); // Or the value for the true shifted up to |idx| with the word. Or(1ull << idx); } // Sets the bit at the given index to false. void Clear(uint32_t idx) { PERFETTO_DCHECK(idx < kBits); // And the integer of all bits set apart from |idx| with the word. *word_ &= ~(1ull << idx); } // Clears all the bits (i.e. sets the atom to zero). void ClearAll() { *word_ = 0; } // Retains all bits up to and including the bit at |idx| and clears // all bits after this point. void ClearAfter(uint32_t idx) { PERFETTO_DCHECK(idx < kBits); *word_ = WordUntil(idx); } // Sets all bits between the bit at |start| and |end| (inclusive). void Set(uint32_t start, uint32_t end) { uint32_t diff = end - start; *word_ |= (MaskAllBitsSetUntil(diff) << static_cast(start)); } // Return a mask of all the bits up to and including bit at |idx|. static uint64_t MaskAllBitsSetUntil(uint32_t idx) { // Start with 1 and shift it up (idx + 1) bits we get: // top : 00000000010000000 uint64_t top = 1ull << ((idx + 1ull) % kBits); // We need to handle the case where idx == 63. In this case |top| will be // zero because 1 << ((idx + 1) % 64) == 1 << (64 % 64) == 1. // In this case, we actually want top == 0. We can do this by shifting // down by (idx + 1) / kBits - this will be a noop for every index other // than idx == 63. This should also be free on x86 because of the mod // instruction above. top = top >> ((idx + 1) / kBits); // Then if we take away 1, we get precisely the mask we want. return top - 1u; } private: // Returns the bits up to and including the bit at |idx|. uint64_t WordUntil(uint32_t idx) const { PERFETTO_DCHECK(idx < kBits); // To understand what is happeninng here, consider an example. // Suppose we want to all the bits up to the 7th bit in the atom // 7th // | // v // atom: 01010101011111000 // // The easiest way to do this would be if we had a mask with only // the bottom 7 bits set: // mask: 00000000001111111 uint64_t mask = MaskAllBitsSetUntil(idx); // Finish up by and'ing the atom with the computed mask. return *word_ & mask; } uint64_t* word_; }; class ConstBitWord { public: static constexpr uint32_t kBits = 64; explicit ConstBitWord(const uint64_t* word) : word_(word) {} // Returns whether the bit at the given index is set. bool IsSet(uint32_t idx) const { PERFETTO_DCHECK(idx < kBits); return (*word_ >> idx) & 1ull; } // Returns the index of the nth set bit. // Undefined if |n| >= |CountSetBits()|. uint16_t IndexOfNthSet(uint32_t n) const { PERFETTO_DCHECK(n < kBits); // The below code is very dense but essentially computes the nth set // bit inside |atom| in the "broadword" style of programming (sometimes // referred to as "SIMD within a register"). // // Instead of treating a uint64 as an individual unit, broadword // algorithms treat them as a packed vector of uint8. By doing this, they // allow branchless algorithms when considering bits of a uint64. // // In benchmarks, this algorithm has found to be the fastest, portable // way of computing the nth set bit (if we were only targetting new // versions of x64, we could also use pdep + ctz but unfortunately // this would fail on WASM - this about 2.5-3x faster on x64). // // The code below was taken from the paper // http://vigna.di.unimi.it/ftp/papers/Broadword.pdf uint64_t s = *word_ - ((*word_ & 0xAAAAAAAAAAAAAAAA) >> 1); s = (s & 0x3333333333333333) + ((s >> 2) & 0x3333333333333333); s = ((s + (s >> 4)) & 0x0F0F0F0F0F0F0F0F) * L8; uint64_t b = (BwLessThan(s, n * L8) >> 7) * L8 >> 53 & ~7ull; uint64_t l = n - ((s << 8) >> b & 0xFF); s = (BwGtZero(((*word_ >> b & 0xFF) * L8) & 0x8040201008040201) >> 7) * L8; uint64_t ret = b + ((BwLessThan(s, l * L8) >> 7) * L8 >> 56); return static_cast(ret); } // Returns the number of set bits. uint32_t CountSetBits() const { return static_cast(PERFETTO_POPCOUNT(*word_)); } // Returns the number of set bits up to and including the bit at |idx|. uint32_t CountSetBits(uint32_t idx) const { PERFETTO_DCHECK(idx < kBits); return static_cast(PERFETTO_POPCOUNT(WordUntil(idx))); } private: // Constant with all the low bit of every byte set. static constexpr uint64_t L8 = 0x0101010101010101; // Constant with all the high bit of every byte set. static constexpr uint64_t H8 = 0x8080808080808080; // Returns a packed uint64 encoding whether each byte of x is less // than each corresponding byte of y. // This is computed in the "broadword" style of programming; see // IndexOfNthSet for details on this. static uint64_t BwLessThan(uint64_t x, uint64_t y) { return (((y | H8) - (x & ~H8)) ^ x ^ y) & H8; } // Returns a packed uint64 encoding whether each byte of x is greater // than or equal zero. // This is computed in the "broadword" style of programming; see // IndexOfNthSet for details on this. static uint64_t BwGtZero(uint64_t x) { return (((x | H8) - L8) | x) & H8; } // Returns the bits up to and including the bit at |idx|. uint64_t WordUntil(uint32_t idx) const { PERFETTO_DCHECK(idx < kBits); // To understand what is happeninng here, consider an example. // Suppose we want to all the bits up to the 7th bit in the atom // 7th // | // v // atom: 01010101011111000 // // The easiest way to do this would be if we had a mask with only // the bottom 7 bits set: // mask: 00000000001111111 uint64_t mask = BitWord::MaskAllBitsSetUntil(idx); // Finish up by and'ing the atom with the computed mask. return *word_ & mask; } const uint64_t* word_; }; // Represents a group of bits with a bitcount such that it is // efficient to work on these bits. // // On x86 architectures we generally target for trace processor, the // size of a cache line is 64 bytes (or 512 bits). For this reason, // we make the size of the block contain 8 atoms as 8 * 64 == 512. class Block { public: // See class documentation for how these constants are chosen. static constexpr uint16_t kWords = 8; static constexpr uint32_t kBits = kWords * BitWord::kBits; explicit Block(uint64_t* start_word) : start_word_(start_word) {} // Sets the bit at the given address to true. void Set(const BlockOffset& addr) { PERFETTO_DCHECK(addr.word_idx < kWords); BitWord(&start_word_[addr.word_idx]).Set(addr.bit_idx); } // Sets the bit at the given address to false. void Clear(const BlockOffset& addr) { PERFETTO_DCHECK(addr.word_idx < kWords); BitWord(&start_word_[addr.word_idx]).Clear(addr.bit_idx); } // Retains all bits up to and including the bit at |addr| and clears // all bits after this point. void ClearAfter(const BlockOffset& offset) { PERFETTO_DCHECK(offset.word_idx < kWords); // In the first atom, keep the bits until the address specified. BitWord(&start_word_[offset.word_idx]).ClearAfter(offset.bit_idx); // For all subsequent atoms, we just clear the whole atom. for (uint32_t i = offset.word_idx + 1; i < kWords; ++i) { BitWord(&start_word_[i]).ClearAll(); } } // Set all the bits between the offsets given by |start| and |end| // (inclusive). void Set(const BlockOffset& start, const BlockOffset& end) { if (start.word_idx == end.word_idx) { // If there is only one word we will change, just set the range within // the word. BitWord(&start_word_[start.word_idx]).Set(start.bit_idx, end.bit_idx); return; } // Otherwise, we have more than one word to set. To do this, we will // do this in three steps. // First, we set the first word from the start to the end of the word. BitWord(&start_word_[start.word_idx]) .Set(start.bit_idx, BitWord::kBits - 1); // Next, we set all words (except the last). for (uint32_t i = start.word_idx + 1; i < end.word_idx; ++i) { BitWord(&start_word_[i]).Set(0, BitWord::kBits - 1); } // Finally, we set the word block from the start to the end offset. BitWord(&start_word_[end.word_idx]).Set(0, end.bit_idx); } void Or(Block& sec) { for (uint32_t i = 0; i < kWords; ++i) { BitWord(&start_word_[i]).Or(sec.start_word_[i]); } } template void FromFiller(uint32_t offset, Filler f) { // We choose to iterate the bits as the outer loop as this allows us // to reuse the mask and the bit offset between iterations of the loop. // This makes a small (but noticable) impact in the performance of this // function. for (uint32_t i = 0; i < BitWord::kBits; ++i) { uint64_t mask = 1ull << i; uint32_t offset_with_bit = offset + i; for (uint32_t j = 0; j < Block::kWords; ++j) { bool res = f(offset_with_bit + j * BitWord::kBits); BitWord(&start_word_[j]).Or(res ? mask : 0); } } } void ReplaceWith(Block block) { for (uint32_t i = 0; i < BitWord::kBits; ++i) { start_word_[i] = block.start_word()[i]; } } uint64_t* start_word() { return start_word_; } private: uint64_t* start_word_; }; class ConstBlock { public: // See class documentation for how these constants are chosen. static constexpr uint16_t kWords = Block::kWords; static constexpr uint32_t kBits = kWords * BitWord::kBits; explicit ConstBlock(const uint64_t* start_word) : start_word_(start_word) {} explicit ConstBlock(Block block) : start_word_(block.start_word()) {} // Returns whether the bit at the given address is set. bool IsSet(const BlockOffset& addr) const { PERFETTO_DCHECK(addr.word_idx < kWords); return ConstBitWord(start_word_ + addr.word_idx).IsSet(addr.bit_idx); } // Gets the offset of the nth set bit in this block. BlockOffset IndexOfNthSet(uint32_t n) const { uint32_t count = 0; for (uint16_t i = 0; i < kWords; ++i) { // Keep a running count of all the set bits in the atom. uint32_t value = count + ConstBitWord(start_word_ + i).CountSetBits(); if (value <= n) { count = value; continue; } // The running count of set bits is more than |n|. That means this // atom contains the bit we are looking for. // Take away the number of set bits to the start of this atom from // |n|. uint32_t set_in_atom = n - count; // Figure out the index of the set bit inside the atom and create the // address of this bit from that. uint16_t bit_idx = ConstBitWord(start_word_ + i).IndexOfNthSet(set_in_atom); PERFETTO_DCHECK(bit_idx < 64); return BlockOffset{i, bit_idx}; } PERFETTO_FATAL("Index out of bounds"); } // Gets the number of set bits within a block up to and including the bit // at the given address. uint32_t CountSetBits(const BlockOffset& addr) const { PERFETTO_DCHECK(addr.word_idx < kWords); // Count all the set bits in the atom until we reach the last atom // index. uint32_t count = 0; for (uint32_t i = 0; i < addr.word_idx; ++i) { count += ConstBitWord(&start_word_[i]).CountSetBits(); } // For the last atom, only count the bits upto and including the bit // index. return count + ConstBitWord(&start_word_[addr.word_idx]) .CountSetBits(addr.bit_idx); } // Gets the number of set bits within a block up. uint32_t CountSetBits() const { uint32_t count = 0; for (uint32_t i = 0; i < kWords; ++i) { count += ConstBitWord(&start_word_[i]).CountSetBits(); } return count; } private: const uint64_t* start_word_; }; BitVector(std::vector words, std::vector counts, uint32_t size); // Returns the number of 8 elements blocks in the BitVector. uint32_t BlockCount() { return static_cast(words_.size()) / Block::kWords; } Block BlockFromIndex(uint32_t idx) { PERFETTO_DCHECK(Block::kWords * (idx + 1) <= words_.size()); uint64_t* start_word = &words_[Block::kWords * idx]; return Block(start_word); } ConstBlock ConstBlockFromIndex(uint32_t idx) const { PERFETTO_DCHECK(Block::kWords * (idx + 1) <= words_.size()); return ConstBlock(&words_[Block::kWords * idx]); } // Set all the bits between the addresses given by |start| and |end| // (inclusive). // Note: this method does not update the counts vector - that is the // responsibility of the caller. void Set(const Address& start, const Address& end) { static constexpr BlockOffset kFirstBlockOffset = BlockOffset{0, 0}; static constexpr BlockOffset kLastBlockOffset = BlockOffset{Block::kWords - 1, BitWord::kBits - 1}; if (start.block_idx == end.block_idx) { // If there is only one block we will change, just set the range within // the block. BlockFromIndex(start.block_idx).Set(start.block_offset, end.block_offset); return; } // Otherwise, we have more than one block to set. To do this, we will // do this in three steps. // First, we set the first block from the start to the end of the block. BlockFromIndex(start.block_idx).Set(start.block_offset, kLastBlockOffset); // Next, we set all blocks (except the last). for (uint32_t cur_block_idx = start.block_idx + 1; cur_block_idx < end.block_idx; ++cur_block_idx) { BlockFromIndex(cur_block_idx).Set(kFirstBlockOffset, kLastBlockOffset); } // Finally, we set the last block from the start to the end offset. BlockFromIndex(end.block_idx).Set(kFirstBlockOffset, end.block_offset); } // Helper function to append a bit. Generally, prefer to call AppendTrue // or AppendFalse instead of this function if you know the type - they will // be faster. void Append(bool value) { if (value) { AppendTrue(); } else { AppendFalse(); } } // Iterate all the set bits in the BitVector. // // Usage: // for (auto it = bv.IterateSetBits(); it; it.Next()) { // ... // } SetBitsIterator IterateSetBits() const; // Returns the index of the word which would store |idx|. static constexpr uint32_t WordFloor(uint32_t idx) { return idx / BitWord::kBits; } // Returns number of words (int64_t) required to store |bit_count| bits. static uint32_t WordCount(uint32_t bit_count) { // See |BlockCount| for an explanation of this trick. return (bit_count + BitWord::kBits - 1) / BitWord::kBits; } static Address IndexToAddress(uint32_t idx) { Address a; a.block_idx = idx / Block::kBits; uint16_t bit_idx_inside_block = idx % Block::kBits; a.block_offset.word_idx = bit_idx_inside_block / BitWord::kBits; a.block_offset.bit_idx = bit_idx_inside_block % BitWord::kBits; return a; } static uint32_t AddressToIndex(Address addr) { return addr.block_idx * Block::kBits + addr.block_offset.word_idx * BitWord::kBits + addr.block_offset.bit_idx; } // Returns number of blocks (arrays of 8 int64_t) required to store // |bit_count| bits. // // This is useful to be able to find indices where "fast" algorithms can // start which work on entire blocks. static constexpr uint32_t BlockCount(uint32_t bit_count) { // Adding |Block::kBits - 1| gives us a quick way to get the count. We // do this instead of adding 1 at the end because that gives incorrect // answers for bit_count % Block::kBits == 0. return (bit_count + Block::kBits - 1) / Block::kBits; } // Returns the index of the block which would store |idx|. static constexpr uint32_t BlockFloor(uint32_t idx) { return idx / Block::kBits; } // Converts a block index to a index in the BitVector. static constexpr uint32_t BlockToIndex(uint32_t block_idx) { return block_idx * Block::kBits; } // Updates the counts in |counts| by counting the set bits in |words|. static void UpdateCounts(const std::vector& words, std::vector& counts) { PERFETTO_CHECK(words.size() == counts.size() * Block::kWords); for (uint32_t i = 1; i < counts.size(); ++i) { counts[i] = counts[i - 1] + ConstBlock(&words[Block::kWords * (i - 1)]).CountSetBits(); } } uint32_t size_ = 0; // See class documentation for how these constants are chosen. static constexpr uint16_t kWordsInBlock = Block::kWords; static constexpr uint32_t kBitsInBlock = kWordsInBlock * BitWord::kBits; std::vector counts_; std::vector words_; }; } // namespace trace_processor } // namespace perfetto #endif // SRC_TRACE_PROCESSOR_CONTAINERS_BIT_VECTOR_H_