#ifdef PFFFT_ENABLE_FLOAT #include "pffft.h" #endif #ifdef PFFFT_ENABLE_DOUBLE #include "pffft_double.h" #endif #include #include #include #ifdef PFFFT_ENABLE_FLOAT int test_float(int TL) { PFFFT_Setup * S; for (int dir_i = 0; dir_i <= 1; ++dir_i) { for (int cplx_i = 0; cplx_i <= 1; ++cplx_i) { const pffft_direction_t dir = (!dir_i) ? PFFFT_FORWARD : PFFFT_BACKWARD; const pffft_transform_t cplx = (!cplx_i) ? PFFFT_REAL : PFFFT_COMPLEX; const int N_min = pffft_min_fft_size(cplx); const int N_max = N_min * 11 + N_min; int NTL = pffft_nearest_transform_size(TL, cplx, (!dir_i)); double near_off = (NTL - TL) * 100.0 / (double)TL; fprintf(stderr, "testing float, %s, %s ..\tminimum transform %d; nearest transform for %d is %d (%.2f%% off)\n", (!dir_i) ? "FORWARD" : "BACKWARD", (!cplx_i) ? "REAL" : "COMPLEX", N_min, TL, NTL, near_off ); for (int N = (N_min/2); N <= N_max; N += (N_min/2)) { int R = N, f2 = 0, f3 = 0, f5 = 0, tmp_f; const int factorizable = pffft_is_valid_size(N, cplx); while (R >= 5*N_min && (R % 5) == 0) { R /= 5; ++f5; } while (R >= 3*N_min && (R % 3) == 0) { R /= 3; ++f3; } while (R >= 2*N_min && (R % 2) == 0) { R /= 2; ++f2; } tmp_f = (R == N_min) ? 1 : 0; assert( factorizable == tmp_f ); S = pffft_new_setup(N, cplx); if ( S && !factorizable ) { fprintf(stderr, "fft setup successful, but NOT factorizable into min(=%d), 2^%d, 3^%d, 5^%d for N = %d (R = %d)\n", N_min, f2, f3, f5, N, R); return 1; } else if ( !S && factorizable) { fprintf(stderr, "fft setup UNsuccessful, but factorizable into min(=%d), 2^%d, 3^%d, 5^%d for N = %d (R = %d)\n", N_min, f2, f3, f5, N, R); return 1; } if (S) pffft_destroy_setup(S); } } } return 0; } #endif #ifdef PFFFT_ENABLE_DOUBLE int test_double(int TL) { PFFFTD_Setup * S; for (int dir_i = 0; dir_i <= 1; ++dir_i) { for (int cplx_i = 0; cplx_i <= 1; ++cplx_i) { const pffft_direction_t dir = (!dir_i) ? PFFFT_FORWARD : PFFFT_BACKWARD; const pffft_transform_t cplx = (!cplx_i) ? PFFFT_REAL : PFFFT_COMPLEX; const int N_min = pffftd_min_fft_size(cplx); const int N_max = N_min * 11 + N_min; int NTL = pffftd_nearest_transform_size(TL, cplx, (!dir_i)); double near_off = (NTL - TL) * 100.0 / (double)TL; fprintf(stderr, "testing double, %s, %s ..\tminimum transform %d; nearest transform for %d is %d (%.2f%% off)\n", (!dir_i) ? "FORWARD" : "BACKWARD", (!cplx_i) ? "REAL" : "COMPLEX", N_min, TL, NTL, near_off ); for (int N = (N_min/2); N <= N_max; N += (N_min/2)) { int R = N, f2 = 0, f3 = 0, f5 = 0, tmp_f; const int factorizable = pffftd_is_valid_size(N, cplx); while (R >= 5*N_min && (R % 5) == 0) { R /= 5; ++f5; } while (R >= 3*N_min && (R % 3) == 0) { R /= 3; ++f3; } while (R >= 2*N_min && (R % 2) == 0) { R /= 2; ++f2; } tmp_f = (R == N_min) ? 1 : 0; assert( factorizable == tmp_f ); S = pffftd_new_setup(N, cplx); if ( S && !factorizable ) { fprintf(stderr, "fft setup successful, but NOT factorizable into min(=%d), 2^%d, 3^%d, 5^%d for N = %d (R = %d)\n", N_min, f2, f3, f5, N, R); return 1; } else if ( !S && factorizable) { fprintf(stderr, "fft setup UNsuccessful, but factorizable into min(=%d), 2^%d, 3^%d, 5^%d for N = %d (R = %d)\n", N_min, f2, f3, f5, N, R); return 1; } if (S) pffftd_destroy_setup(S); } } } return 0; } #endif int main(int argc, char *argv[]) { int N = (1 < argc) ? atoi(argv[1]) : 2; int r = 0; #ifdef PFFFT_ENABLE_FLOAT r = test_float(N); if (r) return r; #endif #ifdef PFFFT_ENABLE_DOUBLE r = test_double(N); #endif return r; }