// Copyright 2020 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include "pw_allocator/freelist_heap.h" #include "lib/stdcompat/bit.h" #include "pw_allocator/block/testing.h" #include "pw_bytes/alignment.h" #include "pw_unit_test/framework.h" namespace { // Test fixtures. using ::pw::allocator::FreeListHeapBuffer; using ::pw::allocator::test::GetAlignedOffsetAfter; class FreeListHeapBufferTest : public ::testing::Test { protected: using BlockType = ::pw::allocator::DetailedBlock<>; static constexpr size_t kN = 2048; alignas(BlockType::kAlignment) std::array buffer_; }; // Unit tests. TEST_F(FreeListHeapBufferTest, CanAllocate) { FreeListHeapBuffer allocator(buffer_); void* ptr = allocator.Allocate(kN / 4); ASSERT_NE(ptr, nullptr); // The returned memory should be within the allocator's memory... EXPECT_GE(ptr, buffer_.data()); EXPECT_LT(ptr, buffer_.data() + buffer_.size()); // ...and should be usable. std::memset(ptr, 0xff, kN / 4); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr); } TEST_F(FreeListHeapBufferTest, AllocationsDontOverlap) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(kN / 4); ASSERT_NE(ptr1, nullptr); uintptr_t ptr1_start = cpp20::bit_cast(ptr1); uintptr_t ptr1_end = ptr1_start + (kN / 4); void* ptr2 = allocator.Allocate(kN / 4); ASSERT_NE(ptr2, nullptr); uintptr_t ptr2_start = cpp20::bit_cast(ptr2); uintptr_t ptr2_end = ptr2_start + (kN / 4); if (ptr1 < ptr2) { EXPECT_LT(ptr1_end, ptr2_start); } else { EXPECT_LT(ptr2_end, ptr1_start); } // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, CanFreeAndRealloc) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(kN / 4); allocator.Free(ptr1); // There's not really a nice way to test that Free works, apart from to try // and get that value back again. void* ptr2 = allocator.Allocate(kN / 4); EXPECT_EQ(ptr1, ptr2); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, ReturnsNullWhenAllocationTooLarge) { FreeListHeapBuffer allocator(buffer_); EXPECT_EQ(allocator.Allocate(kN), nullptr); } TEST_F(FreeListHeapBufferTest, ReturnsNullWhenFull) { size_t offset = GetAlignedOffsetAfter( buffer_.data(), alignof(std::max_align_t), BlockType::kBlockOverhead); auto buffer = pw::ByteSpan(buffer_).subspan(offset); size_t inner_size = buffer.size() - BlockType::kBlockOverhead; FreeListHeapBuffer allocator(buffer); void* ptr1 = allocator.Allocate(inner_size); ASSERT_NE(ptr1, nullptr); void* ptr2 = allocator.Allocate(1); EXPECT_EQ(ptr2, nullptr); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); } TEST_F(FreeListHeapBufferTest, ReturnedPointersAreAligned) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(1); // Should be aligned to native pointer alignment uintptr_t ptr1_start = cpp20::bit_cast(ptr1); size_t alignment = alignof(void*); EXPECT_EQ(ptr1_start % alignment, static_cast(0)); void* ptr2 = allocator.Allocate(1); uintptr_t ptr2_start = cpp20::bit_cast(ptr2); EXPECT_EQ(ptr2_start % alignment, static_cast(0)); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, CanRealloc) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(kN / 4); ASSERT_NE(ptr1, nullptr); void* ptr2 = allocator.Realloc(ptr1, (kN * 3) / 8); ASSERT_NE(ptr2, nullptr); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, ReallocHasSameContent) { FreeListHeapBuffer allocator(buffer_); size_t val1 = 42; void* ptr1 = allocator.Allocate(sizeof(size_t)); ASSERT_NE(ptr1, nullptr); std::memcpy(ptr1, &val1, sizeof(size_t)); size_t val2; void* ptr2 = allocator.Realloc(ptr1, sizeof(size_t) * 2); ASSERT_NE(ptr2, nullptr); std::memcpy(&val2, ptr2, sizeof(size_t)); // Verify that data inside the allocated and reallocated block are the same. EXPECT_EQ(val1, val2); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, ReallocSmallerSize) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(kN / 4); ASSERT_NE(ptr1, nullptr); // For smaller sizes, Realloc will not shrink the block. void* ptr2 = allocator.Realloc(ptr1, kN / 8); EXPECT_EQ(ptr1, ptr2); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr2); } TEST_F(FreeListHeapBufferTest, ReallocTooLarge) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Allocate(kN / 4); ASSERT_NE(ptr1, nullptr); // Realloc() will not invalidate the original pointer if it fails void* ptr2 = allocator.Realloc(ptr1, kN * 2); EXPECT_EQ(ptr2, nullptr); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); } TEST_F(FreeListHeapBufferTest, CanCalloc) { constexpr size_t kNum = 4; constexpr size_t kSize = 128; constexpr std::array kZero = {std::byte(0)}; FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Calloc(kNum, kSize); ASSERT_NE(ptr1, nullptr); // Calloc'd content is zero. EXPECT_EQ(std::memcmp(ptr1, kZero.data(), kZero.size()), 0); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); } TEST_F(FreeListHeapBufferTest, CanCallocWeirdSize) { constexpr size_t kNum = 4; constexpr size_t kSize = 128; constexpr std::array kZero = {std::byte(0)}; FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Calloc(kNum, kSize); ASSERT_NE(ptr1, nullptr); // Calloc'd content is zero. EXPECT_EQ(std::memcmp(ptr1, kZero.data(), kZero.size()), 0); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); } TEST_F(FreeListHeapBufferTest, CallocTooLarge) { FreeListHeapBuffer allocator(buffer_); void* ptr1 = allocator.Calloc(1, kN + 1); EXPECT_EQ(ptr1, nullptr); // All pointers must be freed before the allocator goes out of scope. allocator.Free(ptr1); } } // namespace