// Copyright 2021 The Pigweed Authors // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy of // the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations under // the License. #include "pw_persistent_ram/persistent_buffer.h" #include #include #include "pw_bytes/span.h" #include "pw_random/xor_shift.h" #include "pw_span/span.h" #include "pw_unit_test/framework.h" namespace pw::persistent_ram { namespace { class PersistentTest : public ::testing::Test { protected: static constexpr size_t kBufferSize = 256; PersistentTest() { ZeroPersistentMemory(); } // Emulate invalidation of persistent section(s). void ZeroPersistentMemory() { memset(buffer_, 0, sizeof(buffer_)); } void RandomFillMemory() { random::XorShiftStarRng64 rng(0x9ad75); rng.Get(buffer_); } PersistentBuffer& GetPersistentBuffer() { return *(new (buffer_) PersistentBuffer()); } // Allocate a chunk of aligned storage that can be independently controlled. alignas(PersistentBuffer) std::byte buffer_[sizeof(PersistentBuffer)]; }; TEST_F(PersistentTest, DefaultConstructionAndDestruction) { constexpr uint32_t kExpectedNumber = 0x6C2C6582; { // Emulate a boot where the persistent sections were invalidated. // Although the fixture always does this, we do this an extra time to be // 100% confident that an integrity check cannot be accidentally selected // which results in reporting there is valid data when zero'd. ZeroPersistentMemory(); auto& persistent = GetPersistentBuffer(); auto writer = persistent.GetWriter(); EXPECT_EQ(persistent.size(), 0u); ASSERT_EQ(OkStatus(), writer.Write(as_bytes(span(&kExpectedNumber, 1)))); ASSERT_TRUE(persistent.has_value()); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Emulate a boot where persistent memory was kept as is. auto& persistent = GetPersistentBuffer(); ASSERT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), sizeof(kExpectedNumber)); uint32_t temp = 0; memcpy(&temp, persistent.data(), sizeof(temp)); EXPECT_EQ(temp, kExpectedNumber); } } TEST_F(PersistentTest, LongData) { constexpr std::string_view kTestString( "A nice string should remain valid even if written incrementally!"); constexpr size_t kWriteSize = 5; { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); ASSERT_FALSE(persistent.has_value()); auto writer = persistent.GetWriter(); for (size_t i = 0; i < kTestString.length(); i += kWriteSize) { ASSERT_EQ(OkStatus(), writer.Write(kTestString.data() + i, std::min(kWriteSize, kTestString.length() - i))); } // Need to manually write a null terminator since std::string_view doesn't // include one in the string length. ASSERT_EQ(OkStatus(), writer.Write(std::byte(0))); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data is valid. auto& persistent = GetPersistentBuffer(); ASSERT_TRUE(persistent.has_value()); ASSERT_STREQ(kTestString.data(), reinterpret_cast(persistent.data())); } } TEST_F(PersistentTest, MostlyFilled) { std::array test_data; constexpr size_t kWriteSize = 11; random::XorShiftStarRng64 test_data_generator(0xDA960FD9); test_data_generator.Get(test_data); static_assert(test_data.size() < kBufferSize); { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); EXPECT_FALSE(persistent.has_value()); auto writer = persistent.GetWriter(); for (size_t i = 0; i < test_data.size(); i += kWriteSize) { EXPECT_EQ(OkStatus(), writer.Write(test_data.data() + i, std::min(kWriteSize, test_data.size() - i))); } persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data is valid. auto& persistent = GetPersistentBuffer(); EXPECT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), test_data.size()); EXPECT_EQ( std::memcmp(test_data.data(), persistent.data(), persistent.size()), 0); } } TEST_F(PersistentTest, AttemptOversizedWrite) { std::array test_data; constexpr size_t kWriteSize = 11; random::XorShiftStarRng64 test_data_generator(0xDA960FD9); test_data_generator.Get(test_data); static_assert(test_data.size() < kBufferSize); { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); EXPECT_FALSE(persistent.has_value()); auto writer = persistent.GetWriter(); for (size_t i = 0; i < test_data.size(); i += kWriteSize) { EXPECT_EQ(OkStatus(), writer.Write(test_data.data() + i, std::min(kWriteSize, test_data.size() - i))); } // This final write is guaranteed to be too big, but shouldn't corrupt the // final contents of the buffer. constexpr size_t kFinalWriteSize = 21; EXPECT_GT(writer.ConservativeWriteLimit(), 0u); EXPECT_GT(kFinalWriteSize, writer.ConservativeWriteLimit()); EXPECT_EQ(Status::ResourceExhausted(), writer.Write(test_data.data(), kFinalWriteSize)); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data is valid. auto& persistent = GetPersistentBuffer(); EXPECT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), test_data.size()); EXPECT_EQ( std::memcmp(test_data.data(), persistent.data(), persistent.size()), 0); } } TEST_F(PersistentTest, Filled) { std::array test_data; constexpr size_t kWriteSize = 5; random::XorShiftStarRng64 test_data_generator(0x4BEDED8F); test_data_generator.Get(test_data); static_assert(test_data.size() == kBufferSize); { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); EXPECT_FALSE(persistent.has_value()); auto writer = persistent.GetWriter(); for (size_t i = 0; i < test_data.size(); i += kWriteSize) { EXPECT_EQ(OkStatus(), writer.Write(test_data.data() + i, std::min(kWriteSize, test_data.size() - i))); } EXPECT_EQ(writer.ConservativeWriteLimit(), 0u); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data is valid. auto& persistent = GetPersistentBuffer(); EXPECT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), kBufferSize); EXPECT_EQ( std::memcmp(test_data.data(), persistent.data(), test_data.size()), 0); } } TEST_F(PersistentTest, VariableSizedWrites) { std::array test_data; constexpr size_t kMaxWriteSize = 11; random::XorShiftStarRng64 test_data_generator(0x63CAA44A); test_data_generator.Get(test_data); static_assert(test_data.size() == kBufferSize); { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); EXPECT_FALSE(persistent.has_value()); auto writer = persistent.GetWriter(); size_t count = 0; size_t write_size = 1; while (count < kBufferSize) { const size_t remaining_space = writer.ConservativeWriteLimit(); EXPECT_EQ(OkStatus(), writer.Write(test_data.data() + count, std::min(write_size, remaining_space))); count += write_size; write_size = (write_size % kMaxWriteSize) + 1; ASSERT_NE(write_size, 12u); ASSERT_NE(write_size, 0u); } persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data is valid. auto& persistent = GetPersistentBuffer(); EXPECT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), test_data.size()); EXPECT_EQ( std::memcmp(test_data.data(), persistent.data(), persistent.size()), 0); } } TEST_F(PersistentTest, ZeroDataIsNoValue) { ZeroPersistentMemory(); auto& persistent = GetPersistentBuffer(); EXPECT_FALSE(persistent.has_value()); } TEST_F(PersistentTest, RandomDataIsInvalid) { RandomFillMemory(); auto& persistent = GetPersistentBuffer(); ASSERT_FALSE(persistent.has_value()); } TEST_F(PersistentTest, AppendingData) { constexpr std::string_view kTestString("Test string one!"); constexpr uint32_t kTestNumber = 42; { // Initialize the buffer. RandomFillMemory(); auto& persistent = GetPersistentBuffer(); auto writer = persistent.GetWriter(); EXPECT_EQ(persistent.size(), 0u); // Write an integer. ASSERT_EQ(OkStatus(), writer.Write(as_bytes(span(&kTestNumber, 1)))); ASSERT_TRUE(persistent.has_value()); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Get a pointer to the buffer and validate the contents. auto& persistent = GetPersistentBuffer(); ASSERT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), sizeof(kTestNumber)); // Write more data. auto writer = persistent.GetWriter(); EXPECT_EQ(persistent.size(), sizeof(kTestNumber)); ASSERT_EQ(OkStatus(), writer.Write(as_bytes(span(kTestString)))); persistent.~PersistentBuffer(); // Emulate shutdown / global destructors. } { // Ensure data was appended. auto& persistent = GetPersistentBuffer(); ASSERT_TRUE(persistent.has_value()); EXPECT_EQ(persistent.size(), sizeof(kTestNumber) + kTestString.length()); } } } // namespace } // namespace pw::persistent_ram