// Copyright (c) Facebook, Inc. and its affiliates. // All rights reserved. // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include namespace at::functorch { // Flattens out all dims except the batch dim, and also moves batch dim // (if it exists) to front. static at::Tensor flatten_logical(const Tensor& tensor, std::optional bdim) { if (bdim.has_value()) { auto result = moveBatchDimToFront(tensor, bdim); if (result.dim() > 1) { return result.flatten(1); } else { return result; } } else { return tensor.flatten(); } } // Useful for many loss functions template static std::tuple> loss_batch_rule_helper(const at::Tensor& self, std::optional self_bdim, const at::Tensor& target, std::optional target_bdim, int64_t reduction, Func loss_fn) { auto self_ = flatten_logical(self, self_bdim); auto target_ = flatten_logical(target, target_bdim); auto result = loss_fn(self_, target_, Reduction::None); if (result.dim() == 1) { return std::make_tuple(result, 0); } else if (reduction == Reduction::None) { DimVector end_shape; const auto batched_elem = self_bdim.has_value() ? moveBatchDimToFront(self, self_bdim) : moveBatchDimToFront(target, target_bdim); return std::make_tuple(result.reshape(batched_elem.sizes()), 0); } else if (reduction == Reduction::Sum) { return std::make_tuple(result.sum(-1), 0); } else if (reduction == Reduction::Mean) { return std::make_tuple(result.mean(-1), 0); } TORCH_INTERNAL_ASSERT(false); }; static std::tuple> mse_loss_batch_rule(const at::Tensor& self, std::optional self_bdim, const at::Tensor& target, std::optional target_bdim, int64_t reduction) { return loss_batch_rule_helper(self, self_bdim, target, target_bdim, reduction, [](const at::Tensor& self, const at::Tensor& target, int64_t reduction) { return at::mse_loss(self, target, reduction); }); }; static std::tuple> huber_loss_batch_rule(const at::Tensor& self, std::optional self_bdim, const at::Tensor& target, std::optional target_bdim, int64_t reduction, double delta) { return loss_batch_rule_helper(self, self_bdim, target, target_bdim, reduction, [delta](const at::Tensor& self, const at::Tensor& target, int64_t reduction) { return at::huber_loss(self, target, reduction, delta); }); }; static std::tuple> smooth_l1_loss_batch_rule(const at::Tensor& self, std::optional self_bdim, const at::Tensor& target, std::optional target_bdim, int64_t reduction, double beta) { return loss_batch_rule_helper(self, self_bdim, target, target_bdim, reduction, [beta](const at::Tensor& self, const at::Tensor& target, int64_t reduction) { return at::smooth_l1_loss(self, target, reduction, beta); }); }; static Tensor apply_loss_reduction(const at::Tensor& unreduced, int64_t reduction) { if (reduction == at::Reduction::Mean) { return unreduced.mean(); } else if (reduction == at::Reduction::Sum) { return unreduced.sum(); } return unreduced; } static Tensor binary_cross_entropy_plumbing( const Tensor& self, const Tensor& target, const std::optional& weight, int64_t reduction) { auto maybe_layer = maybeCurrentDynamicLayer(); vmap_check_escaped(maybe_layer, "binary_cross_entropy_plumbing"); int64_t cur_level = maybe_layer->layerId(); if (!isBatchedAtLevel(self, cur_level) && !isBatchedAtLevel(target, cur_level) && !isBatchedAtLevel(weight, cur_level)) { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); return at::binary_cross_entropy(self, target, weight, reduction); } auto [self_value, self_bdim] = unwrapTensorAtLevel(self, cur_level); auto [target_value, target_bdim] = unwrapTensorAtLevel(target, cur_level); Tensor result; if (self_bdim || target_bdim) { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); const auto bdim_size = get_bdim_size2(self_value, self_bdim, target_value, target_bdim); auto self_ = moveBatchDimToFront(self_value, self_bdim); auto target_ = moveBatchDimToFront(target_value, target_bdim); self_ = ensure_has_bdim(self_, self_bdim.has_value(), bdim_size); target_ = ensure_has_bdim(target_, target_bdim.has_value(), bdim_size); result = at::binary_cross_entropy(self_, target_, std::nullopt, Reduction::None); result = makeBatched(result, 0, cur_level); } else { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); result = at::binary_cross_entropy(self_value, target_value, std::nullopt, Reduction::None); } if (weight.has_value() && weight->defined()) { result = result * weight.value(); } return apply_loss_reduction(result, reduction); } static Tensor binary_cross_entropy_backward_plumbing( const Tensor& grad, const Tensor& input, const Tensor& target, const std::optional& weight_opt, int64_t reduction) { auto maybe_layer = maybeCurrentDynamicLayer(); vmap_check_escaped(maybe_layer, "binary_cross_entropy_backward_plumbing"); int64_t cur_level = maybe_layer->layerId(); if (!areAnyBatchedAtLevel({grad, input, target, weight_opt}, cur_level)) { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); return at::binary_cross_entropy_backward(grad, input, target, weight_opt, reduction); } auto [grad_value, grad_bdim] = unwrapTensorAtLevel( reduction == Reduction::None ? grad : grad.expand_as(input), cur_level); auto [input_value, input_bdim] = unwrapTensorAtLevel(input, cur_level); auto [target_value, target_bdim] = unwrapTensorAtLevel(target, cur_level); Tensor grad_input; if (grad_bdim || input_bdim || target_bdim) { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); const auto bdim_size = get_bdim_size3( grad_value, grad_bdim, input_value, input_bdim, target_value, target_bdim); auto grad_ = moveBatchDimToFront(grad_value, grad_bdim); auto input_ = moveBatchDimToFront(input_value, input_bdim); auto target_ = moveBatchDimToFront(target_value, target_bdim); grad_ = ensure_has_bdim(grad_, grad_bdim.has_value(), bdim_size); input_ = ensure_has_bdim(input_, input_bdim.has_value(), bdim_size); target_ = ensure_has_bdim(target_, target_bdim.has_value(), bdim_size); grad_input = at::binary_cross_entropy_backward( grad_, input_, target_, std::nullopt, Reduction::None); grad_input = makeBatched(grad_input, 0, cur_level); } else { c10::impl::ExcludeDispatchKeyGuard guard(DispatchKey::FuncTorchBatched); grad_input = at::binary_cross_entropy_backward( grad_value, input_value, target_value, std::nullopt, Reduction::None); } if (weight_opt.has_value() && weight_opt->defined()) { grad_input = grad_input * weight_opt.value(); } if (reduction == Reduction::Mean) { grad_input.div_(input.numel()); } return grad_input; } TORCH_LIBRARY_IMPL(aten, FuncTorchBatched, m) { VMAP_SUPPORT(mse_loss, mse_loss_batch_rule); // mse_loss_backward uses a decomposition for its batch rule VMAP_SUPPORT(huber_loss, huber_loss_batch_rule); // huber_loss_backward uses a decomposition for its batch rule VMAP_SUPPORT(smooth_l1_loss, smooth_l1_loss_batch_rule); // smooth_l1_loss_backward uses a decomposition for its batch rule m.impl("binary_cross_entropy", binary_cross_entropy_plumbing); m.impl("binary_cross_entropy_backward", binary_cross_entropy_backward_plumbing); } } // namespace at::functorch