""" Update commited CSV files used as reference points by dynamo/inductor CI. Currently only cares about graph breaks, so only saves those columns. Hardcodes a list of job names and artifacts per job, but builds the lookup by querying github sha and finding associated github actions workflow ID and CI jobs, downloading artifact zips, extracting CSVs and filtering them. Usage: python benchmarks/dynamo/ci_expected_accuracy.py Known limitations: - doesn't handle 'retry' jobs in CI, if the same hash has more than one set of artifacts, gets the first one """ import argparse import json import os import subprocess import sys import urllib from io import BytesIO from itertools import product from pathlib import Path from urllib.request import urlopen from zipfile import ZipFile import pandas as pd import requests # Note: the public query url targets this rockset lambda: # https://console.rockset.com/lambdas/details/commons.artifacts ARTIFACTS_QUERY_URL = "https://api.usw2a1.rockset.com/v1/public/shared_lambdas/4ca0033e-0117-41f5-b043-59cde19eff35" CSV_LINTER = str( Path(__file__).absolute().parent.parent.parent.parent / "tools/linter/adapters/no_merge_conflict_csv_linter.py" ) def query_job_sha(repo, sha): params = { "parameters": [ {"name": "sha", "type": "string", "value": sha}, {"name": "repo", "type": "string", "value": repo}, ] } r = requests.post(url=ARTIFACTS_QUERY_URL, json=params) data = r.json() return data["results"] def parse_job_name(job_str): return (part.strip() for part in job_str.split("/")) def parse_test_str(test_str): return (part.strip() for part in test_str[6:].strip(")").split(",")) S3_BASE_URL = "https://gha-artifacts.s3.amazonaws.com" def get_artifacts_urls(results, suites): urls = {} for r in results: if ( r["workflowName"] in ("inductor", "inductor-periodic") and "test" in r["jobName"] ): config_str, test_str = parse_job_name(r["jobName"]) suite, shard_id, num_shards, machine, *_ = parse_test_str(test_str) workflowId = r["workflowId"] id = r["id"] runAttempt = r["runAttempt"] if suite in suites: artifact_filename = f"test-reports-test-{suite}-{shard_id}-{num_shards}-{machine}_{id}.zip" s3_url = f"{S3_BASE_URL}/{repo}/{workflowId}/{runAttempt}/artifact/{artifact_filename}" urls[(suite, int(shard_id))] = s3_url print(f"{suite} {shard_id}, {num_shards}: {s3_url}") return urls def normalize_suite_filename(suite_name): strs = suite_name.split("_") subsuite = strs[-1] if "timm" in subsuite: subsuite = subsuite.replace("timm", "timm_models") return subsuite def download_artifacts_and_extract_csvs(urls): dataframes = {} for (suite, shard), url in urls.items(): try: resp = urlopen(url) subsuite = normalize_suite_filename(suite) artifact = ZipFile(BytesIO(resp.read())) for phase in ("training", "inference"): name = f"test/test-reports/{phase}_{subsuite}.csv" try: df = pd.read_csv(artifact.open(name)) df["graph_breaks"] = df["graph_breaks"].fillna(0).astype(int) prev_df = dataframes.get((suite, phase), None) dataframes[(suite, phase)] = ( pd.concat([prev_df, df]) if prev_df is not None else df ) except KeyError: print( f"Warning: Unable to find {name} in artifacts file from {url}, continuing" ) except urllib.error.HTTPError: print(f"Unable to download {url}, perhaps the CI job isn't finished?") return dataframes def write_filtered_csvs(root_path, dataframes): for (suite, phase), df in dataframes.items(): out_fn = os.path.join(root_path, f"{suite}_{phase}.csv") df.to_csv(out_fn, index=False, columns=["name", "accuracy", "graph_breaks"]) apply_lints(out_fn) def apply_lints(filename): patch = json.loads(subprocess.check_output([sys.executable, CSV_LINTER, filename])) if patch.get("replacement"): with open(filename) as fd: data = fd.read().replace(patch["original"], patch["replacement"]) with open(filename, "w") as fd: fd.write(data) if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter ) parser.add_argument("sha") args = parser.parse_args() repo = "pytorch/pytorch" suites = { f"{a}_{b}" for a, b in product( [ "aot_eager", "aot_inductor", "cpu_aot_inductor", "cpu_aot_inductor_amp_freezing", "cpu_aot_inductor_freezing", "cpu_inductor", "cpu_inductor_amp_freezing", "cpu_inductor_freezing", "dynamic_aot_eager", "dynamic_cpu_aot_inductor", "dynamic_cpu_aot_inductor_amp_freezing", "dynamic_cpu_aot_inductor_freezing", "dynamic_cpu_inductor", "dynamic_inductor", "dynamo_eager", "inductor", ], ["huggingface", "timm", "torchbench"], ) } root_path = "benchmarks/dynamo/ci_expected_accuracy/" assert os.path.exists(root_path), f"cd and ensure {root_path} exists" results = query_job_sha(repo, args.sha) urls = get_artifacts_urls(results, suites) dataframes = download_artifacts_and_extract_csvs(urls) write_filtered_csvs(root_path, dataframes) print("Success. Now, confirm the changes to .csvs and `git add` them if satisfied.")