import itertools from benchmark_helper import time_with_torch_timer import torch import torch._dynamo @torch._dynamo.optimize("inductor", nopython=True) def inductor_scatter_add(dst, src, index): return torch.scatter_add(dst, 1, index, src) def torch_scatter_add(dst, src, index): return torch.scatter_add(dst, 1, index, src) def test_total_time(shapes, types): print( "shape; type; torch scatter_add; inductor scatter_add; torch scatter_add (worst case); inductor scatter_add (worst case)" ) for shape, dtype in itertools.product(shapes, types): print(shape, dtype, sep="; ", end="; ") torch.manual_seed(1) if dtype.is_floating_point: src = torch.randn(shape, device="cpu", dtype=dtype) dst = torch.randn(shape, device="cpu", dtype=dtype) else: src = torch.randint(0, shape[1], shape, device="cpu", dtype=dtype) dst = torch.randint(0, shape[1], shape, device="cpu", dtype=dtype) index = torch.randint(0, shape[1], shape, device="cpu", dtype=torch.int64) worst_index = torch.tensor([[0] * shape[1]], device="cpu", dtype=torch.int64) torch_result = torch_scatter_add(dst, src, index) inductor_result = inductor_scatter_add(dst, src, index) torch.testing.assert_close(torch_result, inductor_result) torch_ms = ( time_with_torch_timer(torch_scatter_add, (dst, src, index)).mean * 1000 ) inductor_ms = ( time_with_torch_timer(inductor_scatter_add, (dst, src, index)).mean * 1000 ) torch_worst_ms = ( time_with_torch_timer(torch_scatter_add, (dst, src, worst_index)).mean * 1000 ) inductor_worst_ms = ( time_with_torch_timer(inductor_scatter_add, (dst, src, worst_index)).mean * 1000 ) print(torch_ms, inductor_ms, torch_worst_ms, inductor_worst_ms, sep="; ") torch._dynamo.reset() if __name__ == "__main__": shapes = [ ([1, 4096]), ([1, 65536]), ] types = [ torch.float32, torch.int32, ] print("test total time") test_total_time(shapes, types) # Results preview on 5800H """ test total time shape; type; torch scatter_add; inductor scatter_add; torch scatter_add (worst case); inductor scatter_add (worst case) [1, 4096]; torch.float32; 0.14733232000025964; 0.05388864999986254; 0.1451428800010035; 0.06496850000075938 [1, 4096]; torch.int32; 0.1440268700002889; 0.05882900999949925; 0.1429359899998417; 0.07036211000013282 [1, 65536]; torch.float32; 1.3435545300012564; 0.15207924000151252; 1.2523296799986383; 3.1408327299982375 [1, 65536]; torch.int32; 1.3407247500003905; 0.12999147000073208; 1.2956029100018895; 0.853825209999286 """