import functools import logging import math import os from collections import Counter, defaultdict from functools import partial from typing import Any, Dict, Generator, Iterable, Tuple import torch from torch.testing import make_tensor from torch.utils import _pytree as pytree from torch.utils._python_dispatch import TorchDispatchMode from torch.utils._pytree import tree_map log = logging.getLogger(__name__) OP_INP_DIRECTORY = os.path.join(os.path.dirname(__file__), "operator_inp_logs") TIMM_DIR = os.path.join(OP_INP_DIRECTORY, "timm_train") HF_DIR = os.path.join(OP_INP_DIRECTORY, "hf_train") TORCHBENCH_DIR = os.path.join(OP_INP_DIRECTORY, "torchbench_train") aten = torch.ops.aten tensor_type = torch._C.TensorType.get() dtype_abbrs = { torch.bfloat16: "bf16", torch.float64: "f64", torch.float32: "f32", torch.float16: "f16", torch.complex32: "c32", torch.complex64: "c64", torch.complex128: "c128", torch.int8: "i8", torch.int16: "i16", torch.int32: "i32", torch.int64: "i64", torch.bool: "b8", torch.uint8: "u8", } dtype_abbrs_parsing = {value: key for key, value in dtype_abbrs.items()} def truncate_inp(arg): if arg in dtype_abbrs: return dtype_abbrs[arg] elif isinstance(arg, torch.device): return arg.type else: return arg # Serialize Function Call class FuncCallWrapper: def __init__(self, call, *args, **kwargs): self.call = call self.args = tree_map(truncate_inp, args) self.kwargs = tree_map(truncate_inp, kwargs) if kwargs is not None else {} def __repr__(self): args = ", ".join([repr(arg) for arg in self.args]) kwargs = "".join( [f", {str(key)}={value}" for key, value in self.kwargs.items()] ) out = f"{self.call}({args}{kwargs})".strip('"') # f strings introduce quotations we dont want for key in dtype_abbrs_parsing: out = out.replace(f"'{key}'", key) return out def serialize_sparse_tensor(e): if isinstance(e, torch._subclasses.FakeTensor): return FuncCallWrapper("ST", list(e.shape), e.dtype, e.layout, e.is_coalesced()) else: return FuncCallWrapper( "ST", list(e.shape), e.dtype, e.layout, e.is_coalesced(), e._nnz() ) def deserialize_sparse_tensor(size, dtype, layout, is_coalesced, nnz=None): raise NotImplementedError def deserialize_tensor(size, dtype, stride=None): if stride is not None: out = torch.empty_strided(size, stride, dtype=dtype) else: out = torch.empty(size, dtype=dtype) try: out.copy_(make_tensor(size, dtype=dtype, device="cpu")) except Exception as e: print(e) return out return out def serialize_tensor(e): if not e.is_contiguous(): return FuncCallWrapper("T", list(e.shape), e.dtype, stride=e.stride()) else: return FuncCallWrapper("T", list(e.shape), e.dtype) def serialize_torch_args(e): if isinstance(e, torch.Tensor): if e.is_sparse: return serialize_sparse_tensor(e) return serialize_tensor(e) else: return truncate_inp(e) def contains_tensor(elems): for elem in pytree.tree_leaves(elems): if isinstance(elem, torch.Tensor): return True return False def skip_args(elems): for i in pytree.tree_leaves(elems): # only shows up in constructors and ops like that if isinstance(i, (torch.memory_format, torch.storage.UntypedStorage)): return True return False def contains_tensor_types(type): return type.isSubtypeOf(tensor_type) or any( contains_tensor_types(e) for e in type.containedTypes() ) @functools.lru_cache(None) def non_compute_operator(op): schema = op._schema # skip constructors if not any(contains_tensor_types(arg.type) for arg in schema.arguments): return True if "_like" in op.name(): return True # allow in place writes if schema.is_mutable: return False tensor_inps = [arg for arg in schema.arguments if arg.type is tensor_type] tensor_outputs = [ret for ret in schema.returns if ret.type is tensor_type] # skip aliasing unless there are multiple outputs if len(tensor_outputs) != 1: return False for inp in tensor_inps: if inp.alias_info and tensor_outputs[0].alias_info: if inp.alias_info.before_set.intersection( tensor_outputs[0].alias_info.after_set ): return True return False class OperatorInputsMode(TorchDispatchMode): def __init__(self, func_db=None): self.func_db = defaultdict(Counter) if func_db is None else func_db def __torch_dispatch__(self, func_overload, types, args=(), kwargs=None): kwargs = kwargs if kwargs else {} arg_meta, kwarg_meta = tree_map(serialize_torch_args, (args, kwargs)) out = func_overload(*args, **kwargs) inps = (args, kwargs) if contains_tensor(inps) and not skip_args(inps) and contains_tensor(out): serialized_str = repr((arg_meta, kwarg_meta)) self.func_db[str(func_overload)][serialized_str] += 1 return out def log_to_file(self, output_filename, *, skip_non_compute_operators=True): sorted_operators = sorted(self.func_db.keys()) with open(output_filename, "w") as f: for operator in sorted_operators: if skip_non_compute_operators and non_compute_operator(eval(operator)): continue f.write(f"Operator: {operator}\n") operator_inputs = self.func_db[operator] for inps, count in operator_inputs.items(): f.write(f"cnt: {count}, ") # repr will add quotation marks around the dtype strings for dtype_abbr in dtype_abbrs.values(): inps = inps.replace("'" + dtype_abbr + "'", dtype_abbr) f.write(inps) f.write("\n") def map_to_device(e, device): if isinstance(e, torch.Tensor): return e.to(device) elif isinstance(e, torch.device): return device elif isinstance(e, str): if e == "cuda" or e == "cpu": return device.type else: return e def map_to_dtype(e, dtype): if isinstance(e, torch.Tensor) and e.is_floating_point(): return e.to(dtype) elif isinstance(e, torch.dtype): return dtype else: return e def deserialize_args(inps): inps = inps.strip().strip("'") global_vals = { "T": deserialize_tensor, "ST": deserialize_sparse_tensor, "th": torch, "inf": math.inf, "torch": torch, **dtype_abbrs_parsing, } # f strings introduce quotations we dont want for key in dtype_abbrs_parsing: inps = inps.replace(f"'{key}'", key) return eval(inps.strip().strip("'").strip('"'), global_vals) class OperatorInputsLoader: def __init__(self, json_file_path): self.operator_db = defaultdict(Counter) with open(json_file_path) as f: lines = f.readlines() i = 0 while i < len(lines): op_line = lines[i].strip("\n") assert "Operator: " in op_line, op_line operator = op_line[len("Operator: ") :] operator = ( operator if operator != "aten.sum.SymInt" else "aten.sum.dim_IntList" ) op_inps = Counter() i += 1 while i < len(lines) and "Operator: " not in lines[i]: line = lines[i] cnt = eval(line[len("cnt: ") : line.find(",")]) inps = line[line.find(",") + 2 :].strip("'") op_inps[inps] += cnt i += 1 self.operator_db[operator] = op_inps def get_inputs_for_operator( self, operator, dtype=None, device="cuda" ) -> Generator[Tuple[Iterable[Any], Dict[str, Any]], None, None]: assert ( str(operator) in self.operator_db ), f"Could not find {operator}, must provide overload" if "embedding" in str(operator): log.warning("Embedding inputs NYI, input data cannot be randomized") yield return # line[1] represents number of times these inputs occured, ignored for now for line in self.operator_db[str(operator)].items(): inps = line[0] args, kwargs = deserialize_args(inps) # Backwards require some inputs to be float16 and some to be float32 # So we record on half and upcast to float when specified if dtype and dtype != torch.float16: to_dtype = partial(map_to_dtype, dtype=dtype) args, kwargs = tree_map(to_dtype, (args, kwargs)) if device: to_device = partial(map_to_device, device=torch.device(device)) args, kwargs = tree_map(to_device, (args, kwargs)) yield args, kwargs def get_all_ops(self): for key in self.operator_db.keys(): try: op = eval(key) except AttributeError as ae: log.warning("Evaluating an op name into an OpOverload: %s", ae) continue yield op def get_call_frequency(self, op): assert ( str(op) in self.operator_db ), f"Could not find {op}, must provide overload" count = 0 for counter in self.operator_db[str(op)].values(): count += counter return count def merge(self, other): for operator, counter_dict in other.operator_db.items(): for inps, cnt in counter_dict.items(): self.operator_db[operator][inps] += cnt @staticmethod def get_timm_loader(): return OperatorInputsLoader._load_directory(TIMM_DIR) @staticmethod def get_huggingface_loader(): return OperatorInputsLoader._load_directory(HF_DIR) @staticmethod def get_torchbench_loader(): return OperatorInputsLoader._load_directory(TORCHBENCH_DIR) @staticmethod def _load_directory(inp_dir): assert os.path.isdir(inp_dir), inp_dir union = None for inp in os.listdir(inp_dir): if inp[-4:] != ".txt": continue path = os.path.join(inp_dir, inp) if union is None: union = OperatorInputsLoader(path) else: union.merge(OperatorInputsLoader(path)) return union