import time import numpy as np import torch """Microbenchmarks for Tensor repeat operator. Supports PyTorch.""" input_shapes = ( (4, 4, 1), (16, 1, 32), (64, 64, 1, 1), (8, 256, 128), (1, 64, 128, 32), (512, 512), ) repeats = ( (1, 1, 1, 64), (1, 4, 1, 2), (1, 2, 2, 15), (1, 1, 3, 2), (128, 1, 8, 1), (1, 1, 2, 16), ) NUM_WARMUP_ITERS = 5 NUM_BENCHMARK_ITERS = 10 DTYPE_TO_BYTES = {"float": 4} def generate_data_for_repeat(): input_tensors = [torch.randn(*input_shape) for input_shape in input_shapes] total_num_elements = 0 for input_tensor, repeat in zip(input_tensors, repeats): total_num_elements += input_tensor.numel() total_num_elements += input_tensor.numel() * np.prod(repeat) return input_tensors, (total_num_elements * DTYPE_TO_BYTES["float"]) input_tensors, total_bytes = generate_data_for_repeat() BYTES_TO_MB = 1.0 / 1000.0 / 1000.0 def pt_repeat(input_tensor, repeat): return input_tensor.repeat(repeat) def pt_repeat_n_times(niters): for _ in range(niters): for input_tensor, repeat in zip(input_tensors, repeats): pt_repeat(input_tensor, repeat) if __name__ == "__main__": # Warm up runs. pt_repeat_n_times(NUM_WARMUP_ITERS) s = time.time() pt_repeat_n_times(NUM_BENCHMARK_ITERS) total_time_s = time.time() - s total_time_per_iter_s = total_time_s / NUM_BENCHMARK_ITERS achieved_bandwidth = (total_bytes * BYTES_TO_MB) / total_time_per_iter_s print(f"Time:{total_time_per_iter_s} Achieved Bandwidth:{achieved_bandwidth} MB/s")