import operator_benchmark as op_bench import torch """Microbenchmarks for Chunk operator""" # Configs for PT Chunk operator chunk_short_configs = op_bench.config_list( attr_names=["M", "N", "chunks"], attrs=[ [8, 8, 2], [256, 512, 2], [512, 512, 2], ], cross_product_configs={ "device": ["cpu", "cuda"], }, tags=["short"], ) chunks_long_configs = op_bench.cross_product_configs( M=[128, 1024], N=[128, 1024], chunks=[2, 4], device=["cpu", "cuda"], tags=["long"] ) class ChunkBenchmark(op_bench.TorchBenchmarkBase): def init(self, M, N, chunks, device): self.inputs = {"input_one": torch.rand(M, N, device=device), "chunks": chunks} self.set_module_name("chunk") def forward(self, input_one, chunks: int): return torch.chunk(input_one, chunks) op_bench.generate_pt_test(chunk_short_configs + chunks_long_configs, ChunkBenchmark) if __name__ == "__main__": op_bench.benchmark_runner.main()