import operator_benchmark as op_bench import torch from torch._ops import ops qarithmetic_binary_configs = op_bench.cross_product_configs( N=(2, 8, 64, 512), dtype=(torch.quint8, torch.qint8, torch.qint32), contig=(False, True), tags=("short",), ) qarithmetic_binary_ops = op_bench.op_list( attrs=( ("add", ops.quantized.add), ("add_relu", ops.quantized.add_relu), ("mul", ops.quantized.mul), ), attr_names=("op_name", "op_func"), ) qarithmetic_binary_scalar_ops = op_bench.op_list( attrs=( ("add_scalar", ops.quantized.add_scalar), ("mul_scalar", ops.quantized.mul_scalar), ), attr_names=("op_name", "op_func"), ) class _QFunctionalBinaryArithmeticBenchmarkBase(op_bench.TorchBenchmarkBase): def setup(self, N, dtype, contig): self.qfunctional = torch.ao.nn.quantized.QFunctional() # TODO: Consider more diverse shapes f_input = (torch.rand(N, N) - 0.5) * 256 self.scale = 1.0 self.zero_point = 0 self.q_input_a = torch.quantize_per_tensor( f_input, scale=self.scale, zero_point=self.zero_point, dtype=dtype ) if not contig: permute_dims = list(range(f_input.ndim))[::-1] self.q_input_a = self.q_input_a.permute(permute_dims) class QFunctionalBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase): def init(self, N, dtype, contig, op_func): super().setup(N, dtype, contig) self.inputs = { "q_input_a": self.q_input_a, "q_input_b": self.q_input_a, "scale": self.scale, "zero_point": self.zero_point, } self.op_func = op_func def forward(self, q_input_a, q_input_b, scale: float, zero_point: int): return self.op_func(q_input_a, q_input_b, scale=scale, zero_point=zero_point) op_bench.generate_pt_tests_from_op_list( qarithmetic_binary_ops, qarithmetic_binary_configs, QFunctionalBenchmark ) class QFunctionalScalarBenchmark(_QFunctionalBinaryArithmeticBenchmarkBase): def init(self, N, dtype, contig, op_func): super().setup(N, dtype, contig) self.inputs = {"q_input": self.q_input_a, "scalar_input": 42} self.op_func = op_func def forward(self, q_input, scalar_input: int): return self.op_func(q_input, scalar_input) op_bench.generate_pt_tests_from_op_list( qarithmetic_binary_scalar_ops, qarithmetic_binary_configs, QFunctionalScalarBenchmark, ) if __name__ == "__main__": op_bench.benchmark_runner.main()