from pt import configs import operator_benchmark as op_bench import torch import torch.ao.nn.quantized as nnq """ Microbenchmarks for qConv operators. """ class QConv1dBenchmark(op_bench.TorchBenchmarkBase): # def init(self, N, IC, OC, L, G, kernel, stride, pad): def init(self, IC, OC, kernel, stride, N, L, device): G = 1 pad = 0 self.scale = 1.0 / 255 self.zero_point = 0 X = torch.randn(N, IC, L, dtype=torch.float32) qX = torch.quantize_per_tensor( X, scale=self.scale, zero_point=self.zero_point, dtype=torch.quint8 ) # Convert the tensor to NHWC format W = torch.randn(OC, IC // G, kernel, dtype=torch.float32) self.qW = torch.quantize_per_tensor( W, scale=self.scale, zero_point=0, dtype=torch.qint8 ) self.inputs = {"input": qX} self.qconv1d = nnq.Conv1d(IC, OC, kernel, stride=stride, padding=pad, groups=G) self.qconv1d.set_weight_bias(self.qW, None) self.qconv1d.scale = torch.tensor(self.scale, dtype=torch.double) self.qconv1d.zero_point = torch.tensor(self.zero_point, dtype=torch.int) self.set_module_name("QConv1d") def forward(self, input): return self.qconv1d(input) class QConv2dBenchmark(op_bench.TorchBenchmarkBase): # def init(self, N, IC, OC, H, W, G, kernel, stride, pad): def init(self, IC, OC, kernel, stride, N, H, W, G, pad, device): # super().init(N, IC, OC, (H, W), G, (kernel, kernel), stride, pad) self.scale = 1.0 / 255 self.zero_point = 0 X = torch.randn(N, IC, H, W, dtype=torch.float32) qX = torch.quantize_per_tensor( X, scale=self.scale, zero_point=self.zero_point, dtype=torch.quint8 ) # Convert the tensor to NHWC format W = torch.randn(OC, IC // G, kernel, kernel, dtype=torch.float32) self.qW = torch.quantize_per_tensor( W, scale=self.scale, zero_point=0, dtype=torch.qint8 ) self.inputs = {"input": qX} self.qconv2d = nnq.Conv2d(IC, OC, kernel, stride=stride, padding=pad, groups=G) self.qconv2d.set_weight_bias(self.qW, None) self.qconv2d.scale = torch.tensor(self.scale, dtype=torch.double) self.qconv2d.zero_point = torch.tensor(self.zero_point, dtype=torch.int) self.set_module_name("QConv2d") def forward(self, input): return self.qconv2d(input) op_bench.generate_pt_test( configs.remove_cuda(configs.conv_1d_configs_short + configs.conv_1d_configs_long), QConv1dBenchmark, ) op_bench.generate_pt_test( configs.remove_cuda(configs.conv_2d_configs_short + configs.conv_2d_configs_long), QConv2dBenchmark, ) if __name__ == "__main__": op_bench.benchmark_runner.main()