#include #include #include using namespace torch::nn; struct TransformerTest : torch::test::SeedingFixture {}; // a generic function to set constants for parameters so we have fixed result // for deterministic test template void set_parameter_to_constants( Model& model, const torch::TensorOptions& tensor_options) { torch::NoGradGuard guard; for (auto& p : model->parameters()) { auto sz = p.view(-1).size(0); p.copy_(torch::cos(torch::arange(0, sz, tensor_options).view(p.sizes()))); } } // a generic function to provide consistent encoder/decoder layer for all the // transformer tests template T_LAYER get_a_test_layer( const torch::TensorOptions& tensor_options, bool use_callable_activation) { int64_t d_model = 4; int64_t nhead = 2; int64_t dim_feedforward = 16; double dropout = 0.0; // activation is always ReLU here and it can be adjusted later depending on // the usage T_LAYER layer(T_OPTIONS(d_model, nhead) .dim_feedforward(dim_feedforward) .dropout(dropout)); if (tensor_options.device() == torch::kCUDA) { layer->to(torch::kCUDA); } if (use_callable_activation) { layer.get()->options.activation( [&](const torch::Tensor& t) { return torch::nn::functional::relu(t); }); } // set constant weights of the model set_parameter_to_constants(layer, tensor_options); return layer; } void transformer_encoder_layer_test_helper( bool is_cuda, bool use_callable_activation) { // this is a deterministic test for TransformerEncoderLayer torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); TransformerEncoderLayer model = get_a_test_layer( tensor_options, use_callable_activation); // relu test case 1 torch::Tensor encoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); torch::Tensor result = model(encoder_input).detach(); torch::Tensor ref_output = torch::tensor( {{{2.258703, 0.127985, -0.697881, 0.170862}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // all 0 values are NOT masked. This should't mask anything torch::Tensor mask = torch::tensor({{0}}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // all 1 values are masked. Since there is only 1 input embedding this will // result in nan. mask = torch::tensor({{1}}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ASSERT_TRUE(torch::isnan(result).all().item().to()); // relu test case 2 encoder_input = torch::tensor({{{1, 2, 3, 4}}, {{5, 6, 7, 8}}}, tensor_options); result = model(encoder_input).detach(); ref_output = torch::tensor( {{{2.272644, 0.119035, -0.691669, 0.153486}}, {{2.272644, 0.119035, -0.691669, 0.153486}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // all 0 values are NOT masked mask = torch::tensor({{0, 0}}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // mask with 1 and 0 mask = torch::tensor({{1, 0}}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{2.301516, 0.092249, -0.679101, 0.103088}}, {{2.301516, 0.092249, -0.679101, 0.103088}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // relu test case 3 encoder_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(encoder_input).detach(); ref_output = torch::tensor( {{{2.428589, 0.020835, -0.602055, -0.085249}, {2.427987, 0.021213, -0.602496, -0.084103}}, {{2.424689, 0.019155, -0.604793, -0.085672}, {2.413863, 0.022211, -0.612486, -0.072490}}, {{2.433774, 0.021598, -0.598343, -0.087548}, {2.425104, 0.019748, -0.604515, -0.084839}}, {{2.436185, 0.022682, -0.596625, -0.087261}, {2.433556, 0.021891, -0.598509, -0.086832}}, {{2.416246, 0.017512, -0.610712, -0.082961}, {2.422901, 0.024187, -0.606178, -0.074929}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // all 0 values are NOT masked mask = torch::zeros({2, 5}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // mask with 0s and 1s mask[0][1] = 1; mask[1][3] = 1; mask[1][4] = 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{2.429026, 0.020793, -0.601741, -0.085642}, {2.428811, 0.021445, -0.601912, -0.084252}}, {{2.425009, 0.019155, -0.604566, -0.085899}, {2.415408, 0.02249, -0.611415, -0.073}}, {{2.434199, 0.021682, -0.598039, -0.087699}, {2.42598, 0.019941, -0.603896, -0.085091}}, {{2.436457, 0.022736, -0.59643, -0.08736}, {2.434021, 0.022093, -0.598179, -0.08679}}, {{2.416531, 0.017498, -0.610513, -0.083181}, {2.4242, 0.024653, -0.605266, -0.074959}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // gelu test case 1 model.get()->options.activation(torch::kGELU); encoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); result = model(encoder_input).detach(); ref_output = torch::tensor( {{{2.249815, 0.131006, -0.702199, 0.177868}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // gelu test case 2 encoder_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(encoder_input); ref_output = torch::tensor( {{{2.42163188, 0.03227153, -0.60714219, -0.05908082}, {2.42151276, 0.03302179, -0.60722523, -0.05762651}}, {{2.41926761, 0.02974034, -0.60879519, -0.0621269}, {2.41626395, 0.03539356, -0.61087842, -0.04978623}}, {{2.42382808, 0.03218872, -0.6055963, -0.06073591}, {2.41983477, 0.03085259, -0.60840145, -0.06046414}}, {{2.42500749, 0.03328855, -0.60476388, -0.0595334}, {2.4237977, 0.03290575, -0.60561789, -0.05940082}}, {{2.41383916, 0.02686345, -0.61256377, -0.06380707}, {2.42000277, 0.03800944, -0.60824798, -0.04754947}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, TransformerEncoderLayer) { transformer_encoder_layer_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/false); transformer_encoder_layer_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerEncoderLayer_CUDA) { transformer_encoder_layer_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/false); transformer_encoder_layer_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/true); } void transformer_decoder_layer_test_helper( bool is_cuda, bool use_callable_activation) { torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); TransformerDecoderLayer model = get_a_test_layer( tensor_options, use_callable_activation); // deterministic input torch::Tensor decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); torch::Tensor memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); torch::Tensor result = model(decoder_input, memory_input).detach(); torch::Tensor ref_output = torch::tensor( {{{2.314351, 0.094805, -0.671322, 0.101977}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); memory_input = torch::tensor({{{1, 2, 3, 4}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.422245, 0.051716, -0.606338, -0.024756}}, {{2.422245, 0.051716, -0.606338, -0.024756}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{1, 2, 3, 4}}, {{5, 6, 7, 8}}}, tensor_options); memory_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.343536, 0.085561, -0.654954, 0.074991}}, {{2.343536, 0.085561, -0.654954, 0.074991}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // key_padding_mask torch::Tensor t_mask = {}; torch::Tensor m_mask = {}; torch::Tensor key_padding_mask = torch::zeros({2, 3}, tensor_options) == 1; result = model(decoder_input, memory_input, t_mask, m_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // key_padding_mask key_padding_mask[0][2] = 1; key_padding_mask[1][1] = 1; key_padding_mask[1][2] = 1; result = model(decoder_input, memory_input, t_mask, m_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430025, 0.027643, -0.601164, -0.073476}, {2.4323, 0.029375, -0.599553, -0.071881}}, {{2.428523, 0.026838, -0.602226, -0.07391}, {2.432634, 0.029842, -0.599318, -0.071253}}, {{2.432278, 0.028152, -0.599555, -0.074139}, {2.432659, 0.029244, -0.599294, -0.072382}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // memory_key_padding_mask torch::Tensor t_key_padding_mask = {}; key_padding_mask = torch::zeros({2, 5}, tensor_options) == 1; result = model( decoder_input, memory_input, t_mask, m_mask, t_key_padding_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // memory_key_padding_mask key_padding_mask[0][4] = 1; key_padding_mask[1][3] = 1; key_padding_mask[1][4] = 1; result = model( decoder_input, memory_input, t_mask, m_mask, t_key_padding_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.429757, 0.027358, -0.601351, -0.073816}, {2.432692, 0.028583, -0.599263, -0.073634}}, {{2.428247, 0.02662, -0.602419, -0.074123}, {2.432657, 0.029055, -0.599293, -0.072732}}, {{2.431515, 0.027687, -0.600096, -0.074459}, {2.433075, 0.028543, -0.598987, -0.073985}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, TransformerDecoderLayer) { transformer_decoder_layer_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/false); transformer_decoder_layer_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerDecoderLayer_CUDA) { transformer_decoder_layer_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/false); transformer_decoder_layer_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/true); } void transformer_decoder_layer_test_helper_gelu( bool is_cuda, bool use_callable_activation) { torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); TransformerDecoderLayer model = get_a_test_layer( tensor_options, use_callable_activation); if (use_callable_activation) { model.get()->options.activation( [&](const torch::Tensor& t) { return torch::nn::functional::gelu(t); }); } else { model.get()->options.activation(torch::kGELU); } // deterministic input torch::Tensor decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); torch::Tensor memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); torch::Tensor result = model(decoder_input, memory_input).detach(); torch::Tensor ref_output = torch::tensor( {{{2.306435, 0.095946, -0.675796, 0.10687}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); memory_input = torch::tensor({{{1, 2, 3, 4}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.415448, 0.054389, -0.610932, -0.0156613}}, {{2.415448, 0.054389, -0.610932, -0.0156613}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{1, 2, 3, 4}}, {{5, 6, 7, 8}}}, tensor_options); memory_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.338531, 0.087709, -0.65776, 0.080646}}, {{2.338531, 0.087709, -0.65776, 0.080646}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.42049104, 0.03443088, -0.60793706, -0.05436271}, {2.42210631, 0.03546578, -0.60679895, -0.05357488}}, {{2.41907674, 0.0336104, -0.60892977, -0.05490462}, {2.42216881, 0.03586554, -0.6067524, -0.05289126}}, {{2.42205716, 0.03488046, -0.60683681, -0.05460596}, {2.42240309, 0.0354595, -0.60659063, -0.05378816}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, TransformerDecoderLayer_gelu) { transformer_decoder_layer_test_helper_gelu( /*is_cuda=*/false, /*use_callable_activation=*/false); transformer_decoder_layer_test_helper_gelu( /*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerDecoderLayer_gelu_CUDA) { transformer_decoder_layer_test_helper_gelu( /*is_cuda=*/true, /*use_callable_activation=*/false); transformer_decoder_layer_test_helper_gelu( /*is_cuda=*/true, /*use_callable_activation=*/true); } void transformer_encoder_test_helper( bool is_cuda, bool use_callable_activation) { // this is a deterministic test for TransformerEncoderLayer torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); TransformerEncoderLayer encoder_layer = get_a_test_layer( tensor_options, use_callable_activation); TransformerEncoder model(TransformerEncoderOptions(encoder_layer, 1)); if (is_cuda) { model->to(torch::kCUDA); } torch::Tensor encoder_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); torch::Tensor result = model(encoder_input).detach(); torch::Tensor ref_output = torch::tensor( {{{2.428589, 0.020835, -0.602055, -0.085249}, {2.427987, 0.021213, -0.602496, -0.084103}}, {{2.424689, 0.019155, -0.604793, -0.085672}, {2.413863, 0.022211, -0.612486, -0.072490}}, {{2.433774, 0.021598, -0.598343, -0.087548}, {2.425104, 0.019748, -0.604515, -0.084839}}, {{2.436185, 0.022682, -0.596625, -0.087261}, {2.433556, 0.021891, -0.598509, -0.086832}}, {{2.416246, 0.017512, -0.610712, -0.082961}, {2.422901, 0.024187, -0.606178, -0.074929}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // all 0 values are NOT masked torch::Tensor mask = torch::zeros({2, 5}, tensor_options) == 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // mask with 0s and 1s mask[0][1] = 1; mask[1][3] = 1; mask[1][4] = 1; result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{2.429026, 0.020793, -0.601741, -0.085642}, {2.428811, 0.021445, -0.601912, -0.084252}}, {{2.425009, 0.019155, -0.604566, -0.085899}, {2.415408, 0.02249, -0.611415, -0.073}}, {{2.434199, 0.021682, -0.598039, -0.087699}, {2.42598, 0.019941, -0.603896, -0.085091}}, {{2.436457, 0.022736, -0.59643, -0.08736}, {2.434021, 0.022093, -0.598179, -0.08679}}, {{2.416531, 0.017498, -0.610513, -0.083181}, {2.4242, 0.024653, -0.605266, -0.074959}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // test case 2, multiple layers no norm model = TransformerEncoder(TransformerEncoderOptions(encoder_layer, 2)); if (is_cuda) { model->to(torch::kCUDA); } result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{2.419051, 0.017446, -0.608738, -0.085003}, {2.419102, 0.017452, -0.608703, -0.085026}}, {{2.419043, 0.017445, -0.608744, -0.084999}, {2.419052, 0.017446, -0.608738, -0.085004}}, {{2.419067, 0.017448, -0.608727, -0.085010}, {2.419098, 0.017452, -0.608706, -0.085024}}, {{2.419072, 0.017449, -0.608724, -0.085012}, {2.419119, 0.017455, -0.608691, -0.085034}}, {{2.419019, 0.017442, -0.608761, -0.084989}, {2.419075, 0.017449, -0.608722, -0.085014}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); model = TransformerEncoder(TransformerEncoderOptions(encoder_layer, 6)); if (is_cuda) { model->to(torch::kCUDA); } result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{2.419101, 0.017453, -0.608703, -0.085025}, {2.419101, 0.017453, -0.608704, -0.085025}}, {{2.419101, 0.017453, -0.608703, -0.085025}, {2.419101, 0.017453, -0.608704, -0.085025}}, {{2.419101, 0.017453, -0.608703, -0.085025}, {2.419101, 0.017453, -0.608704, -0.085025}}, {{2.419101, 0.017453, -0.608703, -0.085025}, {2.419101, 0.017453, -0.608704, -0.085025}}, {{2.419101, 0.017453, -0.608703, -0.085025}, {2.419101, 0.017453, -0.608704, -0.085025}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // test case 3, multiple layers with norm LayerNorm norm(LayerNormOptions({encoder_layer.get()->options.d_model()})); model = TransformerEncoder( TransformerEncoderOptions(encoder_layer, 2).norm(AnyModule(norm))); if (is_cuda) { model->to(torch::kCUDA); } result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{1.695949, -0.357635, -0.893077, -0.445238}, {1.695955, -0.357639, -0.893050, -0.445266}}, {{1.695948, -0.357634, -0.893082, -0.445233}, {1.695950, -0.357635, -0.893077, -0.445238}}, {{1.695951, -0.357636, -0.893069, -0.445246}, {1.695955, -0.357639, -0.893052, -0.445264}}, {{1.695952, -0.357636, -0.893066, -0.445249}, {1.695957, -0.357641, -0.893041, -0.445276}}, {{1.695946, -0.357632, -0.893095, -0.445220}, {1.695952, -0.357637, -0.893065, -0.445251}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); model = TransformerEncoder( TransformerEncoderOptions(encoder_layer, 6).norm(AnyModule(norm))); if (is_cuda) { model->to(torch::kCUDA); } result = model( encoder_input, /*src_mask=*/torch::Tensor{}, /*src_key_padding_mask=*/mask) .detach(); ref_output = torch::tensor( {{{1.695955, -0.357639, -0.893051, -0.445265}, {1.695955, -0.357639, -0.893051, -0.445265}}, {{1.695955, -0.357639, -0.893051, -0.445265}, {1.695955, -0.357639, -0.893051, -0.445265}}, {{1.695955, -0.357639, -0.893051, -0.445265}, {1.695955, -0.357639, -0.893051, -0.445265}}, {{1.695955, -0.357639, -0.893051, -0.445265}, {1.695955, -0.357639, -0.893051, -0.445265}}, {{1.695955, -0.357639, -0.893051, -0.445265}, {1.695955, -0.357639, -0.893051, -0.445265}}}, tensor_options); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, TransformerEncoder) { transformer_encoder_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/false); transformer_encoder_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerEncoder_CUDA) { transformer_encoder_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/false); transformer_encoder_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/true); } TEST_F(TransformerTest, PrettyPrintTransformerEncoderLayer) { ASSERT_EQ( c10::str(TransformerEncoderLayer(4, 2)), "torch::nn::TransformerEncoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" ")"); } TEST_F(TransformerTest, PrettyPrintTransformerEncoder) { LayerNorm norm = LayerNorm(LayerNormOptions({4})); TransformerEncoderOptions options( TransformerEncoderOptions(TransformerEncoderLayerOptions(4, 2), 2) .norm(AnyModule(norm))); ASSERT_EQ( c10::str(TransformerEncoder(options)), "torch::nn::TransformerEncoderImpl(\n" " (layers): torch::nn::ModuleList(\n" " (0): torch::nn::TransformerEncoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" " )\n" " (1): torch::nn::TransformerEncoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" " )\n" " )\n" " (norm): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" ")"); } TEST_F(TransformerTest, PrettyPrintTransformerDecoderLayer) { ASSERT_EQ( c10::str(TransformerDecoderLayer(4, 2)), "torch::nn::TransformerDecoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (multihead_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm3): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout3): torch::nn::Dropout(p=0.1, inplace=false)\n" ")"); } void transformer_decoder_test_helper( bool is_cuda, bool use_callable_activation) { // this is a deterministic test for TransformerDecoder torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); TransformerDecoderLayer decoder_layer = get_a_test_layer( tensor_options, use_callable_activation); TransformerDecoder model(TransformerDecoderOptions(decoder_layer, 1)); if (is_cuda) { model->to(torch::kCUDA); } torch::Tensor decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); torch::Tensor memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); torch::Tensor result = model(decoder_input, memory_input).detach(); torch::Tensor ref_output = torch::tensor( {{{2.314351, 0.094805, -0.671322, 0.101977}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); memory_input = torch::tensor({{{1, 2, 3, 4}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.422245, 0.051716, -0.606338, -0.024756}}, {{2.422245, 0.051716, -0.606338, -0.024756}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{1, 2, 3, 4}}, {{5, 6, 7, 8}}}, tensor_options); memory_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.343536, 0.085561, -0.654954, 0.074991}}, {{2.343536, 0.085561, -0.654954, 0.074991}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // key_padding_mask torch::Tensor t_mask = {}; torch::Tensor m_mask = {}; torch::Tensor key_padding_mask = torch::zeros({2, 3}, tensor_options) == 1; result = model(decoder_input, memory_input, t_mask, m_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // key_padding_mask key_padding_mask[0][2] = 1; key_padding_mask[1][1] = 1; key_padding_mask[1][2] = 1; result = model(decoder_input, memory_input, t_mask, m_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430025, 0.027643, -0.601164, -0.073476}, {2.4323, 0.029375, -0.599553, -0.071881}}, {{2.428523, 0.026838, -0.602226, -0.07391}, {2.432634, 0.029842, -0.599318, -0.071253}}, {{2.432278, 0.028152, -0.599555, -0.074139}, {2.432659, 0.029244, -0.599294, -0.072382}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // memory_key_padding_mask torch::Tensor t_key_padding_mask = {}; key_padding_mask = torch::zeros({2, 5}, tensor_options) == 1; result = model( decoder_input, memory_input, t_mask, m_mask, t_key_padding_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.430065, 0.027862, -0.601136, -0.073096}, {2.431935, 0.028907, -0.599809, -0.072488}}, {{2.428457, 0.027053, -0.602275, -0.073462}, {2.431970, 0.029387, -0.599789, -0.071621}}, {{2.431934, 0.028196, -0.599802, -0.073809}, {2.432306, 0.028858, -0.599542, -0.072846}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // memory_key_padding_mask key_padding_mask[0][4] = 1; key_padding_mask[1][3] = 1; key_padding_mask[1][4] = 1; result = model( decoder_input, memory_input, t_mask, m_mask, t_key_padding_mask, key_padding_mask) .detach(); ref_output = torch::tensor( {{{2.429757, 0.027358, -0.601351, -0.073816}, {2.432692, 0.028583, -0.599263, -0.073634}}, {{2.428247, 0.02662, -0.602419, -0.074123}, {2.432657, 0.029055, -0.599293, -0.072732}}, {{2.431515, 0.027687, -0.600096, -0.074459}, {2.433075, 0.028543, -0.598987, -0.073985}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // multiple layers no norm model = TransformerDecoder(TransformerDecoderOptions(decoder_layer, 2)); if (is_cuda) { model->to(torch::kCUDA); } decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.31316, 0.0950293, -0.671995, 0.102802}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // multiple layers no norm model = TransformerDecoder(TransformerDecoderOptions(decoder_layer, 6)); if (is_cuda) { model->to(torch::kCUDA); } // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.42794, 0.026164, -0.60263, -0.0747591}, {2.43113, 0.0279516, -0.600376, -0.0736896}}, {{2.42794, 0.026164, -0.60263, -0.0747591}, {2.43113, 0.0279516, -0.600376, -0.0736896}}, {{2.42794, 0.026164, -0.60263, -0.0747591}, {2.43113, 0.0279516, -0.600376, -0.0736896}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // multiple layers with norm LayerNorm norm(LayerNormOptions({decoder_layer.get()->options.d_model()})); model = TransformerDecoder( TransformerDecoderOptions(decoder_layer, 2).norm(AnyModule(norm))); if (is_cuda) { model->to(torch::kCUDA); } decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{1.66166, -0.326986, -1.01466, -0.320017}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // multiple layers with norm model = TransformerDecoder( TransformerDecoderOptions(decoder_layer, 6).norm(AnyModule(norm))); if (is_cuda) { model->to(torch::kCUDA); } // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{1.69559, -0.357291, -0.894741, -0.443553}, {1.69571, -0.357363, -0.894154, -0.444196}}, {{1.69559, -0.357291, -0.894741, -0.443553}, {1.69571, -0.357363, -0.894154, -0.444196}}, {{1.69559, -0.357291, -0.894741, -0.443553}, {1.69571, -0.357363, -0.894154, -0.444196}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // gelu activation test cases decoder_layer.get()->options.activation(torch::kGELU); model = TransformerDecoder(TransformerDecoderOptions(decoder_layer, 1)); if (is_cuda) { model->to(torch::kCUDA); } // deterministic input decoder_input = torch::tensor({{{20, 30, 40, 50}}}, tensor_options); memory_input = torch::tensor({{{60, 70, 80, 90}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.306435, 0.095946, -0.675796, 0.10687}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); memory_input = torch::tensor({{{1, 2, 3, 4}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.415448, 0.054389, -0.610932, -0.0156613}}, {{2.415448, 0.054389, -0.610932, -0.0156613}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor({{{1, 2, 3, 4}}, {{5, 6, 7, 8}}}, tensor_options); memory_input = torch::tensor({{{9, 10, 11, 12}}, {{11, 12, 13, 14}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.338531, 0.087709, -0.65776, 0.080646}}, {{2.338531, 0.087709, -0.65776, 0.080646}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // deterministic input decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.42049104, 0.03443088, -0.60793706, -0.05436271}, {2.42210631, 0.03546578, -0.60679895, -0.05357488}}, {{2.41907674, 0.0336104, -0.60892977, -0.05490462}, {2.42216881, 0.03586554, -0.6067524, -0.05289126}}, {{2.42205716, 0.03488046, -0.60683681, -0.05460596}, {2.42240309, 0.0354595, -0.60659063, -0.05378816}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // Multiple layers no norm model = TransformerDecoder(TransformerDecoderOptions(decoder_layer, 6)); if (is_cuda) { model->to(torch::kCUDA); } decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{2.41859, 0.0328114, -0.609269, -0.0560386}, {2.42138, 0.034598, -0.607316, -0.0546574}}, {{2.41859, 0.0328114, -0.609269, -0.0560386}, {2.42138, 0.034598, -0.607316, -0.0546574}}, {{2.41859, 0.0328114, -0.609269, -0.0560386}, {2.42138, 0.034598, -0.607316, -0.0546574}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); // Multiple layers with norm norm = LayerNorm(LayerNormOptions({decoder_layer.get()->options.d_model()})); model = TransformerDecoder( TransformerDecoderOptions(decoder_layer, 6).norm(AnyModule(norm))); if (is_cuda) { model->to(torch::kCUDA); } decoder_input = torch::tensor( {{{0.4517, 0.6793, 0.5313, 0.0034}, {0.2678, 0.3677, 0.4459, 0.7166}}, {{0.8100, 0.3716, 0.4096, 0.1976}, {0.6958, 0.8844, 0.6081, 0.8315}}, {{0.0494, 0.9343, 0.5955, 0.3830}, {0.5404, 0.3464, 0.9378, 0.6200}}}, tensor_options); memory_input = torch::tensor( {{{0.7462, 0.6653, 0.5679, 0.4891}, {0.5387, 0.1655, 0.3565, 0.0471}}, {{0.8335, 0.2799, 0.5031, 0.2947}, {0.1402, 0.0318, 0.7636, 0.1346}}, {{0.6333, 0.9344, 0.1376, 0.9938}, {0.8924, 0.2872, 0.6692, 0.2944}}, {{0.9897, 0.6915, 0.3154, 0.1733}, {0.8645, 0.3513, 0.3064, 0.0767}}, {{0.8117, 0.2366, 0.4838, 0.7881}, {0.3718, 0.4945, 0.9511, 0.0864}}}, tensor_options); result = model(decoder_input, memory_input).detach(); ref_output = torch::tensor( {{{1.69298, -0.355163, -0.906375, -0.431439}, {1.69305, -0.355195, -0.906062, -0.431791}}, {{1.69298, -0.355163, -0.906375, -0.431439}, {1.69305, -0.355195, -0.906062, -0.431791}}, {{1.69298, -0.355163, -0.906375, -0.431439}, {1.69305, -0.355195, -0.906062, -0.431791}}}, tensor_options); ASSERT_EQ(result.sizes().size(), ref_output.sizes().size()); ASSERT_TRUE(torch::allclose( result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, TransformerDecoder) { transformer_decoder_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/false); transformer_decoder_test_helper( /*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerDecoder_CUDA) { transformer_decoder_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/false); transformer_decoder_test_helper( /*is_cuda=*/true, /*use_callable_activation=*/true); } TEST_F(TransformerTest, PrettyPrintTransformerDecoder) { LayerNorm norm = LayerNorm(LayerNormOptions({4})); TransformerDecoderOptions options( TransformerDecoderOptions(TransformerDecoderLayerOptions(4, 2), 2) .norm(AnyModule(norm))); ASSERT_EQ( c10::str(TransformerDecoder(options)), "torch::nn::TransformerDecoderImpl(\n" " (layers): torch::nn::ModuleList(\n" " (0): torch::nn::TransformerDecoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (multihead_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm3): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout3): torch::nn::Dropout(p=0.1, inplace=false)\n" " )\n" " (1): torch::nn::TransformerDecoderLayerImpl(\n" " (self_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (multihead_attn): torch::nn::MultiheadAttention(\n" " (out_proj): torch::nn::Linear(in_features=4, out_features=4, bias=true)\n" " )\n" " (linear1): torch::nn::Linear(in_features=4, out_features=2048, bias=true)\n" " (dropout): torch::nn::Dropout(p=0.1, inplace=false)\n" " (linear2): torch::nn::Linear(in_features=2048, out_features=4, bias=true)\n" " (norm1): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm2): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (norm3): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" " (dropout1): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout2): torch::nn::Dropout(p=0.1, inplace=false)\n" " (dropout3): torch::nn::Dropout(p=0.1, inplace=false)\n" " )\n" " )\n" " (norm): torch::nn::LayerNorm([4], eps=1e-05, elementwise_affine=true)\n" ")"); } void transformer_test_helper(bool is_cuda, bool use_callable_activation) { // this is a deterministic test for Transformere torch::Device device = is_cuda ? torch::kCUDA : torch::kCPU; torch::TensorOptions tensor_options = torch::TensorOptions().dtype(torch::kFloat32).device(device); // transformer created encoder/decoder auto options = TransformerOptions() .d_model(4) .nhead(2) .num_encoder_layers(2) .num_decoder_layers(1) .dim_feedforward(16) .dropout(0.0) .activation(torch::kReLU); if (use_callable_activation) { options.activation( [&](const torch::Tensor& t) { return torch::nn::functional::relu(t); }); } Transformer model(options); set_parameter_to_constants(model, tensor_options); if (tensor_options.device() == torch::kCUDA) { model->to(torch::kCUDA); } // transformer with customized encoder/decoder LayerNorm enorm(LayerNormOptions({4})); TransformerEncoder encoder( TransformerEncoderOptions( TransformerEncoderLayerOptions(4, 2).dim_feedforward(16).dropout(0.0), 2) .norm(AnyModule(enorm))); LayerNorm dnorm(LayerNormOptions({4})); TransformerDecoder decoder( TransformerDecoderOptions( TransformerDecoderLayerOptions(4, 2).dim_feedforward(16).dropout(0.0), 1) .norm(AnyModule(dnorm))); Transformer model_cus(TransformerOptions() .d_model(4) .nhead(2) .custom_encoder(AnyModule(encoder)) .custom_decoder(AnyModule(decoder))); set_parameter_to_constants(model_cus, tensor_options); if (tensor_options.device() == torch::kCUDA) { model_cus->to(torch::kCUDA); } // test cases torch::Tensor src = torch::tensor( {{{1.0, 2.0, 3.0, 4.0}, {5.0, 6.0, 7.0, 8.0}}, {{9.0, 10.0, 11.0, 12.0}, {13.0, 14.0, 15.0, 16.0}}, {{17.0, 18.0, 19.0, 20.0}, {21.0, 22.0, 23.0, 24.0}}}, tensor_options); torch::Tensor tgt = torch::tensor( {{{1.0, 2.0, 3.0, 4.0}, {5.0, 6.0, 7.0, 8.0}}, {{9.0, 10.0, 11.0, 12.0}, {13.0, 14.0, 15.0, 16.0}}}, tensor_options); torch::Tensor ref_output = torch::tensor( {{{2.695875, 0.347114, -0.044355, -0.549541}, {2.696091, 0.347015, -0.044770, -0.548522}}, {{2.695875, 0.347114, -0.044355, -0.549541}, {2.696091, 0.347015, -0.044770, -0.548522}}}, tensor_options); torch::Tensor result = model(src, tgt); torch::Tensor result_cus = model_cus(src, tgt); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE(result.equal(result_cus)); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); torch::Tensor src_mask = Transformer::Impl::generate_square_subsequent_mask(src.size(0)) .to(tensor_options); ref_output = torch::tensor( {{{2.695875, 0.347114, -0.044355, -0.549541}, {2.696091, 0.347015, -0.044770, -0.548522}}, {{2.695875, 0.347114, -0.044355, -0.549541}, {2.696091, 0.347015, -0.044770, -0.548522}}}, tensor_options); result = model(src, tgt, src_mask); result_cus = model_cus(src, tgt, src_mask); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE(result.equal(result_cus)); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); torch::Tensor tgt_key_padding_mask = torch::zeros({tgt.size(1), tgt.size(0)}, tensor_options) == 1; tgt_key_padding_mask[0][0] = 1; tgt_key_padding_mask[1][1] = 1; ref_output = torch::tensor( {{{2.696114, 0.347004, -0.044813, -0.548417}, {2.696091, 0.347015, -0.044770, -0.548522}}, {{2.696114, 0.347004, -0.044813, -0.548417}, {2.696091, 0.347015, -0.044770, -0.548522}}}, tensor_options); result = model( src, tgt, src_mask, torch::Tensor(), torch::Tensor(), torch::Tensor(), tgt_key_padding_mask); result_cus = model_cus( src, tgt, src_mask, torch::Tensor(), torch::Tensor(), torch::Tensor(), tgt_key_padding_mask); ASSERT_EQ(result.sizes(), ref_output.sizes()); ASSERT_TRUE(result.equal(result_cus)); ASSERT_TRUE( torch::allclose(result, ref_output, 1e-7, 1e-5, /*equal_nan=*/true)); } TEST_F(TransformerTest, Transformer) { transformer_test_helper(/*is_cuda=*/false, /*use_callable_activation=*/false); transformer_test_helper(/*is_cuda=*/false, /*use_callable_activation=*/true); } TEST_F(TransformerTest, Transformer_CUDA) { transformer_test_helper(/*is_cuda=*/true, /*use_callable_activation=*/false); transformer_test_helper(/*is_cuda=*/true, /*use_callable_activation=*/true); } TEST_F(TransformerTest, TransformerArgsCorrectness) { Transformer model(TransformerOptions() .d_model(4) .nhead(2) .num_encoder_layers(2) .num_decoder_layers(1) .dim_feedforward(16) .dropout(0.0) .activation(torch::kReLU)); torch::Tensor src = torch::randn({2, 3, 4}); torch::Tensor tgt = torch::randn({3, 2, 4}); ASSERT_THROWS_WITH( model(src, tgt), "src and tgt should have equal batch size"); tgt = torch::randn({2, 3, 3}); ASSERT_THROWS_WITH( model(src, tgt), "src and tgt should have same feature size as d_model"); src = torch::randn({2, 3}); ASSERT_THROWS_WITH(model(src, tgt), "src and tgt should have 3 dimensions"); }