#include #include #include #include #include #include #include #include #include TEST(TensorpipeSerialize, Base) { // Sender serializes at::Tensor t1 = torch::ones({1024}, at::ScalarType::Int); at::Tensor t2 = torch::ones({1024}, at::ScalarType::Float); std::vector tensors{t1, t2}; std::vector payload = {'1', '2', '3'}; std::vector payloadCopy = payload; // for testing torch::distributed::rpc::MessageType mtype = torch::distributed::rpc::MessageType::UNKNOWN; int64_t mId = 100; auto sendingRpcMessage = c10::make_intrusive( std::move(payload), std::move(tensors), mtype); sendingRpcMessage->setId(mId); auto [sendingTpMessage, sendingTpBuffers] = torch::distributed::rpc::tensorpipeSerialize( std::move(sendingRpcMessage), {}, {}); // Mimic receiving message descriptor: recvingTpDescriptor is a copy of // sendingTpMessage except for the data pointers which are left null. tensorpipe::Descriptor recvingTpDescriptor; recvingTpDescriptor.metadata = sendingTpMessage.metadata; recvingTpDescriptor.payloads.reserve(sendingTpMessage.payloads.size()); for (auto& tpPayload : sendingTpMessage.payloads) { tensorpipe::Descriptor::Payload p; p.length = tpPayload.length; p.metadata = tpPayload.metadata; recvingTpDescriptor.payloads.push_back(std::move(p)); } EXPECT_EQ( recvingTpDescriptor.payloads.size(), sendingTpMessage.payloads.size()); recvingTpDescriptor.tensors.reserve(sendingTpMessage.tensors.size()); for (auto& tpTensor : sendingTpMessage.tensors) { tensorpipe::Descriptor::Tensor t; t.length = tpTensor.length; t.sourceDevice = tpTensor.buffer.device(); t.targetDevice = tpTensor.targetDevice; t.metadata = tpTensor.metadata; recvingTpDescriptor.tensors.push_back(std::move(t)); } EXPECT_EQ( recvingTpDescriptor.tensors.size(), sendingTpMessage.tensors.size()); // Mimic readDescriptor() callback: // - Allocate buffers // - Fill pointers in tensorpipe message auto [recvingTpAllocation, recvingTpBuffers] = torch::distributed::rpc::tensorpipeAllocate(recvingTpDescriptor, {}); // Mimic tensorpipe data transfer EXPECT_EQ( recvingTpAllocation.payloads.size(), sendingTpMessage.payloads.size()); for (const auto i : c10::irange(recvingTpAllocation.payloads.size())) { tensorpipe::Message::Payload& srcPayload = sendingTpMessage.payloads[i]; tensorpipe::Allocation::Payload& dstPayload = recvingTpAllocation.payloads[i]; if (srcPayload.length) { // Empty vector's data() can return nullptr, use the length to avoid // copying into nullptr memcpy(dstPayload.data, srcPayload.data, srcPayload.length); } } EXPECT_EQ( recvingTpAllocation.tensors.size(), sendingTpMessage.tensors.size()); for (const auto i : c10::irange(recvingTpAllocation.tensors.size())) { tensorpipe::Message::Tensor& srcTensor = sendingTpMessage.tensors[i]; tensorpipe::Allocation::Tensor& dstTensor = recvingTpAllocation.tensors[i]; memcpy( dstTensor.buffer.unwrap().ptr, srcTensor.buffer.unwrap().ptr, srcTensor.length); } // Mimic read() callback: // - Unpickle c10::intrusive_ptr recvingRpcMessage = torch::distributed::rpc::tensorpipeDeserialize( std::move(recvingTpDescriptor), std::move(recvingTpBuffers)); // Data is ready EXPECT_EQ(mtype, recvingRpcMessage->type()); EXPECT_EQ(payloadCopy, recvingRpcMessage->payload()); EXPECT_EQ(mId, recvingRpcMessage->id()); EXPECT_TRUE(torch::equal(t1, recvingRpcMessage->tensors()[0])); EXPECT_TRUE(torch::equal(t2, recvingRpcMessage->tensors()[1])); } TEST(TensorpipeSerialize, RecopySparseTensors) { // Take a 1K row of a 1M tensors, and make sure we don't send across 1M rows. constexpr size_t k1K = 1024; at::Tensor main = torch::randn({k1K, k1K}); at::Tensor tiny = main.select(0, 2); // Select a row in the middle EXPECT_EQ(tiny.numel(), k1K); EXPECT_EQ(tiny.storage().nbytes() / tiny.itemsize(), k1K * k1K); std::vector tensors{main, tiny}; std::vector payload = {'1', '2', '3'}; torch::distributed::rpc::MessageType mtype = torch::distributed::rpc::MessageType::UNKNOWN; auto sendingRpcMessage = c10::make_intrusive( std::move(payload), std::move(tensors), mtype); auto [sendingTpMessage, tpBuffers] = torch::distributed::rpc::tensorpipeSerialize( std::move(sendingRpcMessage), {}, {}); EXPECT_EQ(tpBuffers.tensors.size(), 2); EXPECT_EQ(sendingTpMessage.tensors.size(), 2); EXPECT_TRUE(torch::equal(main, tpBuffers.tensors[0])); EXPECT_TRUE(torch::equal(tiny, tpBuffers.tensors[1])); // Test cloned storage EXPECT_EQ( main.storage().data(), sendingTpMessage.tensors[0].buffer.unwrap().ptr); EXPECT_NE( tiny.storage().data(), sendingTpMessage.tensors[1].buffer.unwrap().ptr); EXPECT_EQ(tiny.element_size() * k1K, sendingTpMessage.tensors[1].length); } TEST(TensorpipeSerialize, NoDeleterTensors) { std::vector blob1{.8, .2}; std::vector blob2{.7, .5, .9}; at::Tensor t1 = torch::from_blob((float*)(blob1.data()), blob1.size()); at::Tensor t2 = torch::from_blob((float*)(blob2.data()), blob2.size()); std::vector tensors{t1, t2}; std::vector payload = {'1', '2', '3'}; torch::distributed::rpc::MessageType mtype = torch::distributed::rpc::MessageType::UNKNOWN; auto sendingRpcMessage = c10::make_intrusive( std::move(payload), std::move(tensors), mtype); auto [sendingTpMessage, tpBuffers] = torch::distributed::rpc::tensorpipeSerialize( std::move(sendingRpcMessage), {}, {}); EXPECT_EQ(tpBuffers.copiedTensors.size(), 2); EXPECT_EQ(sendingTpMessage.tensors.size(), 2); EXPECT_EQ( tpBuffers.copiedTensors[0].size(), sendingTpMessage.tensors[0].length); EXPECT_EQ( tpBuffers.copiedTensors[1].size(), sendingTpMessage.tensors[1].length); EXPECT_EQ( tpBuffers.copiedTensors[0].data(), sendingTpMessage.tensors[0].buffer.unwrap().ptr); EXPECT_EQ( tpBuffers.copiedTensors[1].data(), sendingTpMessage.tensors[1].buffer.unwrap().ptr); EXPECT_TRUE( memcmp( tpBuffers.copiedTensors[0].data(), t1.storage().data(), sendingTpMessage.tensors[0].length) == 0); EXPECT_TRUE( memcmp( tpBuffers.copiedTensors[1].data(), t2.storage().data(), sendingTpMessage.tensors[1].length) == 0); }