# Owner(s): ["module: inductor"] import logging import os import unittest import torch from torch._inductor import config from torch._inductor.test_case import run_tests, TestCase from torch.testing._internal.common_utils import ( instantiate_parametrized_tests, parametrize, ) from torch.testing._internal.inductor_utils import HAS_CPU, HAS_CUDA torch.set_float32_matmul_precision("high") if HAS_CUDA: torch.cuda.memory._set_allocator_settings("expandable_segments:False") log = logging.getLogger(__name__) def _get_path_without_sccache() -> str: """ Get the PATH environment variable without sccache. """ path_envs = os.environ.get("PATH", "").split(":") path_envs = [env for env in path_envs if "/opt/cache/bin" not in env] return ":".join(path_envs) @instantiate_parametrized_tests class TestCKBackend(TestCase): def setUp(self): # The new inductor cache refresh mechanism # introduced with https://github.com/pytorch/pytorch/pull/122661 # interacts badly with persistent subprocesses during # autotuning. So we need to disable automatic cache refresh # before calling setUp() on the parent class. old_disable_fresh_cache_envvar = os.environ.get( "INDUCTOR_TEST_DISABLE_FRESH_CACHE", "" ) torch.random.manual_seed(1234) try: import ck4inductor self.ck_dir = os.path.dirname(ck4inductor.__file__) os.environ["TORCHINDUCTOR_CK_DIR"] = self.ck_dir except ImportError as e: raise unittest.SkipTest("Composable Kernel library not installed") from e try: os.environ["INDUCTOR_TEST_DISABLE_FRESH_CACHE"] = "1" super().setUp() finally: os.environ[ "INDUCTOR_TEST_DISABLE_FRESH_CACHE" ] = old_disable_fresh_cache_envvar @unittest.skipIf(not torch.version.hip, "ROCM only") @unittest.skipIf(config.is_fbcode(), "fbcode requires different CK path setup") @unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()}) @parametrize("max_autotune_gemm_backends", ("CK", "ATen,Triton,CK")) @parametrize("autotune_in_subproc", (True, False)) def test_max_autotune_precompile_matmul( self, max_autotune_gemm_backends, autotune_in_subproc ): """ Make sure autotuning mm doesn't crash. """ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False def mm(a, b): return a @ b tensor_options = {"device": "cuda", "dtype": torch.bfloat16} a = torch.randn(2240, 256, **tensor_options) b = torch.randn(256, 2048, **tensor_options) assert "rocm" in dir(config) with config.patch( { "max_autotune": True, "autotune_in_subproc": autotune_in_subproc, "max_autotune_gemm_backends": max_autotune_gemm_backends, "compile_threads": 2, "rocm.n_max_profiling_configs": 2, "rocm.ck_dir": self.ck_dir, } ): Y_compiled = torch.compile(mm, dynamic=False)(a, b) Y = mm(a, b) torch.testing.assert_close(Y_compiled, Y) @unittest.skipIf(not torch.version.hip, "ROCM only") @unittest.skipIf(config.is_fbcode(), "fbcode requires different CK path setup") @unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()}) @parametrize("max_autotune_gemm_backends", ("CK",)) @parametrize("autotune_in_subproc", (True,)) def test_max_autotune_precompile_matmul_dynamic( self, max_autotune_gemm_backends, autotune_in_subproc ): """ Test matmul with dynamic shapes """ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False tensor_options = {"device": "cuda", "dtype": torch.bfloat16} a = torch.randn(2240, 256, **tensor_options) b = torch.randn(256, 2048, **tensor_options) torch._dynamo.mark_dynamic(a, 0) assert "rocm" in dir(config) with config.patch( { "max_autotune": True, "autotune_in_subproc": autotune_in_subproc, "max_autotune_gemm_backends": max_autotune_gemm_backends, "compile_threads": 2, "rocm.n_max_profiling_configs": 2, "rocm.ck_dir": self.ck_dir, } ): @torch.compile(dynamic=True) def compiled_mm(a, b): return a @ b Y_compiled = compiled_mm(a, b) Y = a @ b torch.testing.assert_close(Y_compiled, Y) a1 = torch.randn(1024, 256, **tensor_options) Y1_compiled = compiled_mm(a1, b) Y1 = a1 @ b torch.testing.assert_close(Y1_compiled, Y1) @unittest.skipIf(not torch.version.hip, "ROCM only") @unittest.skipIf(config.is_fbcode(), "fbcode requires different CK path setup") @unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()}) @parametrize("max_autotune_gemm_backends", ("CK", "ATen,Triton,CK")) def test_max_autotune_precompile_preselected(self, max_autotune_gemm_backends): """ End to end test for picking preselected ck instances """ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False def mm(a, b): return a @ b tensor_options = {"device": "cuda", "dtype": torch.float16} a = torch.randn(2240, 256, **tensor_options) b = torch.randn(2048, 256, **tensor_options).transpose(0, 1) assert "rocm" in dir(config) with config.patch( { "max_autotune": True, "autotune_in_subproc": True, "max_autotune_gemm_backends": max_autotune_gemm_backends, "compile_threads": 12, "rocm.ck_dir": self.ck_dir, "rocm.use_preselected_instances": True, } ): Y_compiled = torch.compile(mm, dynamic=False)(a, b) Y = mm(a, b) torch.testing.assert_close(Y_compiled, Y) @unittest.skipIf(not torch.version.hip, "ROCM only") @unittest.skipIf(config.is_fbcode(), "fbcode requires different CK path setup") @unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()}) @parametrize("max_autotune_gemm_backends", ("CK", "ATen,Triton,CK")) def test_max_autotune_precompile_non_contiguous(self, max_autotune_gemm_backends): """ Make sure the ck template can work with non-contiguous inputs """ torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False tensor_options = {"device": "cuda", "dtype": torch.float16} a = torch.empty_strided((50257, 32768), (1, 50304), **tensor_options) b = torch.empty_strided((32768, 768), (768, 1), **tensor_options) assert "rocm" in dir(config) with config.patch( { "max_autotune": True, "autotune_in_subproc": True, "max_autotune_gemm_backends": max_autotune_gemm_backends, "compile_threads": 2, "rocm.ck_dir": self.ck_dir, "rocm.n_max_profiling_configs": 2, } ): @torch.compile(dynamic=False) def mm(a, b): return a @ b Y_compiled = mm(a, b) Y_eager = a @ b torch.testing.assert_close(Y_compiled, Y_eager) @unittest.skipIf(not torch.version.hip, "ROCM only") @unittest.skipIf(config.is_fbcode(), "fbcode requires different CK path setup") @unittest.mock.patch.dict(os.environ, {"PATH": _get_path_without_sccache()}) @parametrize("max_autotune_gemm_backends", ("CK", "ATen,Triton,CK")) @parametrize("x_shape", ([4096, 2048], [2048], [4096, 1])) def test_max_autotune_addmm(self, max_autotune_gemm_backends, x_shape): torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False m, k, n = 4096, 224, 2048 alpha, beta = 1.0, 1.0 tensor_options = {"device": "cuda", "dtype": torch.float16} x = torch.ones(x_shape, **tensor_options) a = torch.randn(m, k, **tensor_options) b = torch.randn(k, n, **tensor_options) assert "rocm" in dir(config) with config.patch( { "max_autotune": True, "autotune_in_subproc": True, "max_autotune_gemm_backends": max_autotune_gemm_backends, "compile_threads": 2, "rocm.ck_dir": self.ck_dir, "rocm.n_max_profiling_configs": 2, } ): @torch.compile(dynamic=False) def addmm(x, a, b, alpha, beta): return torch.addmm(x, a, b, alpha=alpha, beta=beta) Y_compiled = addmm(x, a, b, alpha, beta) Y_eager = torch.addmm(x, a, b, alpha=alpha, beta=beta) torch.testing.assert_close(Y_compiled, Y_eager) if __name__ == "__main__": from torch._inductor.utils import is_big_gpu # Set env to make it work in CI. if HAS_CUDA and HAS_CPU and is_big_gpu(0): run_tests()