# https://pytorch.org/docs/stable/torch.html#math-operations import math import torch class PointwiseOpsModule(torch.nn.Module): def forward(self): return self.pointwise_ops() def pointwise_ops(self): a = torch.randn(4) b = torch.randn(4) t = torch.tensor([-1, -2, 3], dtype=torch.int8) r = torch.tensor([0, 1, 10, 0], dtype=torch.int8) t = torch.tensor([-1, -2, 3], dtype=torch.int8) s = torch.tensor([4, 0, 1, 0], dtype=torch.int8) f = torch.zeros(3) g = torch.tensor([-1, 0, 1]) w = torch.tensor([0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) return len( torch.abs(torch.tensor([-1, -2, 3])), torch.absolute(torch.tensor([-1, -2, 3])), torch.acos(a), torch.arccos(a), torch.acosh(a.uniform_(1.0, 2.0)), torch.add(a, 20), torch.add(a, b, out=a), b.add(a), b.add(a, out=b), b.add_(a), b.add(1), torch.add(a, torch.randn(4, 1), alpha=10), torch.addcdiv( torch.randn(1, 3), torch.randn(3, 1), torch.randn(1, 3), value=0.1 ), torch.addcmul( torch.randn(1, 3), torch.randn(3, 1), torch.randn(1, 3), value=0.1 ), torch.angle(a), torch.asin(a), torch.arcsin(a), torch.asinh(a), torch.arcsinh(a), torch.atan(a), torch.arctan(a), torch.atanh(a.uniform_(-1.0, 1.0)), torch.arctanh(a.uniform_(-1.0, 1.0)), torch.atan2(a, a), torch.bitwise_not(t), torch.bitwise_and(t, torch.tensor([1, 0, 3], dtype=torch.int8)), torch.bitwise_or(t, torch.tensor([1, 0, 3], dtype=torch.int8)), torch.bitwise_xor(t, torch.tensor([1, 0, 3], dtype=torch.int8)), torch.ceil(a), torch.ceil(float(torch.tensor(0.5))), torch.ceil(torch.tensor(0.5).item()), torch.clamp(a, min=-0.5, max=0.5), torch.clamp(a, min=0.5), torch.clamp(a, max=0.5), torch.clip(a, min=-0.5, max=0.5), torch.conj(a), torch.copysign(a, 1), torch.copysign(a, b), torch.cos(a), torch.cosh(a), torch.deg2rad( torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]]) ), torch.div(a, b), a.div(b), a.div(1), a.div_(b), torch.divide(a, b, rounding_mode="trunc"), torch.divide(a, b, rounding_mode="floor"), torch.digamma(torch.tensor([1.0, 0.5])), torch.erf(torch.tensor([0.0, -1.0, 10.0])), torch.erfc(torch.tensor([0.0, -1.0, 10.0])), torch.erfinv(torch.tensor([0.0, 0.5, -1.0])), torch.exp(torch.tensor([0.0, math.log(2.0)])), torch.exp(float(torch.tensor(1))), torch.exp2(torch.tensor([0.0, math.log(2.0), 3.0, 4.0])), torch.expm1(torch.tensor([0.0, math.log(2.0)])), torch.fake_quantize_per_channel_affine( torch.randn(2, 2, 2), (torch.randn(2) + 1) * 0.05, torch.zeros(2), 1, 0, 255, ), torch.fake_quantize_per_tensor_affine(a, 0.1, 0, 0, 255), torch.float_power(torch.randint(10, (4,)), 2), torch.float_power(torch.arange(1, 5), torch.tensor([2, -3, 4, -5])), torch.floor(a), torch.floor(float(torch.tensor(1))), torch.floor_divide(torch.tensor([4.0, 3.0]), torch.tensor([2.0, 2.0])), torch.floor_divide(torch.tensor([4.0, 3.0]), 1.4), torch.fmod(torch.tensor([-3, -2, -1, 1, 2, 3]), 2), torch.fmod(torch.tensor([1, 2, 3, 4, 5]), 1.5), torch.frac(torch.tensor([1.0, 2.5, -3.2])), torch.randn(4, dtype=torch.cfloat).imag, torch.ldexp(torch.tensor([1.0]), torch.tensor([1])), torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4])), torch.lerp(torch.arange(1.0, 5.0), torch.empty(4).fill_(10), 0.5), torch.lerp( torch.arange(1.0, 5.0), torch.empty(4).fill_(10), torch.full_like(torch.arange(1.0, 5.0), 0.5), ), torch.lgamma(torch.arange(0.5, 2, 0.5)), torch.log(torch.arange(5) + 10), torch.log10(torch.rand(5)), torch.log1p(torch.randn(5)), torch.log2(torch.rand(5)), torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1, -2, -3])), torch.logaddexp( torch.tensor([-100.0, -200.0, -300.0]), torch.tensor([-1, -2, -3]) ), torch.logaddexp( torch.tensor([1.0, 2000.0, 30000.0]), torch.tensor([-1, -2, -3]) ), torch.logaddexp2(torch.tensor([-1.0]), torch.tensor([-1, -2, -3])), torch.logaddexp2( torch.tensor([-100.0, -200.0, -300.0]), torch.tensor([-1, -2, -3]) ), torch.logaddexp2( torch.tensor([1.0, 2000.0, 30000.0]), torch.tensor([-1, -2, -3]) ), torch.logical_and(r, s), torch.logical_and(r.double(), s.double()), torch.logical_and(r.double(), s), torch.logical_and(r, s, out=torch.empty(4, dtype=torch.bool)), torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8)), torch.logical_not(torch.tensor([0.0, 1.5, -10.0], dtype=torch.double)), torch.logical_not( torch.tensor([0.0, 1.0, -10.0], dtype=torch.double), out=torch.empty(3, dtype=torch.int16), ), torch.logical_or(r, s), torch.logical_or(r.double(), s.double()), torch.logical_or(r.double(), s), torch.logical_or(r, s, out=torch.empty(4, dtype=torch.bool)), torch.logical_xor(r, s), torch.logical_xor(r.double(), s.double()), torch.logical_xor(r.double(), s), torch.logical_xor(r, s, out=torch.empty(4, dtype=torch.bool)), torch.logit(torch.rand(5), eps=1e-6), torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0])), torch.i0(torch.arange(5, dtype=torch.float32)), torch.igamma(a, b), torch.igammac(a, b), torch.mul(torch.randn(3), 100), b.mul(a), b.mul(5), b.mul(a, out=b), b.mul_(a), b.mul_(5), torch.multiply(torch.randn(4, 1), torch.randn(1, 4)), torch.mvlgamma(torch.empty(2, 3).uniform_(1.0, 2.0), 2), torch.tensor([float("nan"), float("inf"), -float("inf"), 3.14]), torch.nan_to_num(w), torch.nan_to_num_(w), torch.nan_to_num(w, nan=2.0), torch.nan_to_num(w, nan=2.0, posinf=1.0), torch.neg(torch.randn(5)), # torch.nextafter(torch.tensor([1, 2]), torch.tensor([2, 1])) == torch.tensor([eps + 1, 2 - eps]), torch.polygamma(1, torch.tensor([1.0, 0.5])), torch.polygamma(2, torch.tensor([1.0, 0.5])), torch.polygamma(3, torch.tensor([1.0, 0.5])), torch.polygamma(4, torch.tensor([1.0, 0.5])), torch.pow(a, 2), torch.pow(2, float(torch.tensor(0.5))), torch.pow(torch.arange(1.0, 5.0), torch.arange(1.0, 5.0)), torch.rad2deg( torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]) ), torch.randn(4, dtype=torch.cfloat).real, torch.reciprocal(a), torch.remainder(torch.tensor([-3.0, -2.0]), 2), torch.remainder(torch.tensor([1, 2, 3, 4, 5]), 1.5), torch.round(a), torch.round(torch.tensor(0.5).item()), torch.rsqrt(a), torch.sigmoid(a), torch.sign(torch.tensor([0.7, -1.2, 0.0, 2.3])), torch.sgn(a), torch.signbit(torch.tensor([0.7, -1.2, 0.0, 2.3])), torch.sin(a), torch.sinc(a), torch.sinh(a), torch.sqrt(a), torch.square(a), torch.sub(torch.tensor((1, 2)), torch.tensor((0, 1)), alpha=2), b.sub(a), b.sub_(a), b.sub(5), torch.sum(5), torch.tan(a), torch.tanh(a), torch.true_divide(a, a), torch.trunc(a), torch.trunc_(a), torch.xlogy(f, g), torch.xlogy(f, g), torch.xlogy(f, 4), torch.xlogy(2, g), ) class ReductionOpsModule(torch.nn.Module): def forward(self): return self.reduction_ops() def reduction_ops(self): a = torch.randn(4) b = torch.randn(4) c = torch.tensor(0.5) return len( torch.argmax(a), torch.argmin(a), torch.amax(a), torch.amin(a), torch.aminmax(a), torch.all(a), torch.any(a), torch.max(a), a.max(a), torch.max(a, 0), torch.min(a), a.min(a), torch.min(a, 0), torch.dist(a, b), torch.logsumexp(a, 0), torch.mean(a), torch.mean(a, 0), torch.nanmean(a), torch.median(a), torch.nanmedian(a), torch.mode(a), torch.norm(a), a.norm(2), torch.norm(a, dim=0), torch.norm(c, torch.tensor(2)), torch.nansum(a), torch.prod(a), torch.quantile(a, torch.tensor([0.25, 0.5, 0.75])), torch.quantile(a, 0.5), torch.nanquantile(a, torch.tensor([0.25, 0.5, 0.75])), torch.std(a), torch.std_mean(a), torch.sum(a), torch.unique(a), torch.unique_consecutive(a), torch.var(a), torch.var_mean(a), torch.count_nonzero(a), ) class ComparisonOpsModule(torch.nn.Module): def forward(self): a = torch.tensor(0) b = torch.tensor(1) return len( torch.allclose(a, b), torch.argsort(a), torch.eq(a, b), torch.eq(a, 1), torch.equal(a, b), torch.ge(a, b), torch.ge(a, 1), torch.greater_equal(a, b), torch.greater_equal(a, 1), torch.gt(a, b), torch.gt(a, 1), torch.greater(a, b), torch.isclose(a, b), torch.isfinite(a), torch.isin(a, b), torch.isinf(a), torch.isposinf(a), torch.isneginf(a), torch.isnan(a), torch.isreal(a), torch.kthvalue(a, 1), torch.le(a, b), torch.le(a, 1), torch.less_equal(a, b), torch.lt(a, b), torch.lt(a, 1), torch.less(a, b), torch.maximum(a, b), torch.minimum(a, b), torch.fmax(a, b), torch.fmin(a, b), torch.ne(a, b), torch.ne(a, 1), torch.not_equal(a, b), torch.sort(a), torch.topk(a, 1), torch.msort(a), ) class OtherMathOpsModule(torch.nn.Module): def forward(self): return self.other_ops() def other_ops(self): a = torch.randn(4) b = torch.randn(4) c = torch.randint(0, 8, (5,), dtype=torch.int64) e = torch.randn(4, 3) f = torch.randn(4, 4, 4) size = [0, 1] dims = [0, 1] return len( torch.atleast_1d(a), torch.atleast_2d(a), torch.atleast_3d(a), torch.bincount(c), torch.block_diag(a), torch.broadcast_tensors(a), torch.broadcast_to(a, (4)), # torch.broadcast_shapes(a), torch.bucketize(a, b), torch.cartesian_prod(a), torch.cdist(e, e), torch.clone(a), torch.combinations(a), torch.corrcoef(a), # torch.cov(a), torch.cross(e, e), torch.cummax(a, 0), torch.cummin(a, 0), torch.cumprod(a, 0), torch.cumsum(a, 0), torch.diag(a), torch.diag_embed(a), torch.diagflat(a), torch.diagonal(e), torch.diff(a), torch.einsum("iii", f), torch.flatten(a), torch.flip(e, dims), torch.fliplr(e), torch.flipud(e), torch.kron(a, b), torch.rot90(e), torch.gcd(c, c), torch.histc(a), torch.histogram(a), torch.meshgrid(a), torch.meshgrid(a, indexing="xy"), torch.lcm(c, c), torch.logcumsumexp(a, 0), torch.ravel(a), torch.renorm(e, 1, 0, 5), torch.repeat_interleave(c), torch.roll(a, 1, 0), torch.searchsorted(a, b), torch.tensordot(e, e), torch.trace(e), torch.tril(e), torch.tril_indices(3, 3), torch.triu(e), torch.triu_indices(3, 3), torch.vander(a), torch.view_as_real(torch.randn(4, dtype=torch.cfloat)), torch.view_as_complex(torch.randn(4, 2)).real, torch.resolve_conj(a), torch.resolve_neg(a), ) class SpectralOpsModule(torch.nn.Module): def forward(self): return self.spectral_ops() def spectral_ops(self): a = torch.randn(10) b = torch.randn(10, 8, 4, 2) return len( torch.stft(a, 8), torch.stft(a, torch.tensor(8)), torch.istft(b, 8), torch.bartlett_window(2, dtype=torch.float), torch.blackman_window(2, dtype=torch.float), torch.hamming_window(4, dtype=torch.float), torch.hann_window(4, dtype=torch.float), torch.kaiser_window(4, dtype=torch.float), ) class BlasLapackOpsModule(torch.nn.Module): def forward(self): return self.blas_lapack_ops() def blas_lapack_ops(self): m = torch.randn(3, 3) a = torch.randn(10, 3, 4) b = torch.randn(10, 4, 3) v = torch.randn(3) return len( torch.addbmm(m, a, b), torch.addmm(torch.randn(2, 3), torch.randn(2, 3), torch.randn(3, 3)), torch.addmv(torch.randn(2), torch.randn(2, 3), torch.randn(3)), torch.addr(torch.zeros(3, 3), v, v), torch.baddbmm(m, a, b), torch.bmm(a, b), torch.chain_matmul(torch.randn(3, 3), torch.randn(3, 3), torch.randn(3, 3)), # torch.cholesky(a), # deprecated # torch.cholesky_inverse(torch.randn(3, 3)), # had some error # torch.cholesky_solve(torch.randn(3, 3), torch.randn(3, 3)), torch.dot(v, v), # torch.linalg.eig(m), # not build with lapack # torch.geqrf(a), torch.ger(v, v), torch.inner(m, m), # torch.inverse(m), # torch.det(m), # torch.logdet(m), # torch.slogdet(m), # torch.lstsq(m, m), # torch.linalg.lu_factor(m), # torch.lu_solve(m, *torch.linalg.lu_factor(m)), # torch.lu_unpack(*torch.linalg.lu_factor(m)), torch.matmul(m, m), torch.matrix_power(m, 2), # torch.matrix_rank(m), torch.matrix_exp(m), torch.mm(m, m), torch.mv(m, v), # torch.orgqr(a, m), # torch.ormqr(a, m, v), torch.outer(v, v), # torch.pinverse(m), # torch.qr(a), # torch.solve(m, m), # torch.svd(a), # torch.svd_lowrank(a), # torch.pca_lowrank(a), # torch.symeig(a), # deprecated # torch.lobpcg(a, b), # not supported torch.trapz(m, m), torch.trapezoid(m, m), torch.cumulative_trapezoid(m, m), # torch.triangular_solve(m, m), torch.vdot(v, v), )