import torch import torch.nn as nn import torch.nn.functional as F # https://pytorch.org/docs/stable/nn.html class NNConvolutionModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input1d = torch.randn(1, 4, 36) self.input2d = torch.randn(1, 4, 30, 10) self.input3d = torch.randn(1, 4, 10, 4, 4) self.module1d = nn.ModuleList( [ nn.Conv1d(4, 33, 3), nn.ConvTranspose1d(4, 33, 3), nn.Fold(output_size=(5, 10), kernel_size=(2, 2)), ] ) self.module2d = nn.ModuleList( [ nn.Conv2d(4, 33, 3), nn.ConvTranspose2d(4, 33, 3), nn.Unfold(kernel_size=3), ] ) self.module3d = nn.ModuleList( [ nn.Conv3d(4, 33, 2), nn.ConvTranspose3d(4, 33, 3), ] ) def forward(self): return len( ( [module(self.input1d) for i, module in enumerate(self.module1d)], [module(self.input2d) for i, module in enumerate(self.module2d)], [module(self.input3d) for i, module in enumerate(self.module3d)], ) ) class NNPoolingModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input1d = torch.randn(1, 16, 50) self.module1d = nn.ModuleList( [ nn.MaxPool1d(3, stride=2), nn.AvgPool1d(3, stride=2), nn.LPPool1d(2, 3, stride=2), nn.AdaptiveMaxPool1d(3), nn.AdaptiveAvgPool1d(3), ] ) self.input2d = torch.randn(1, 16, 30, 10) self.module2d = nn.ModuleList( [ nn.MaxPool2d((3, 2), stride=(2, 1)), nn.AvgPool2d((3, 2), stride=(2, 1)), nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5)), nn.LPPool2d(2, 3, stride=(2, 1)), nn.AdaptiveMaxPool2d((5, 7)), nn.AdaptiveAvgPool2d(7), ] ) self.input3d = torch.randn(1, 16, 20, 4, 4) self.module3d = nn.ModuleList( [ nn.MaxPool3d(2), nn.AvgPool3d(2), nn.FractionalMaxPool3d(2, output_ratio=(0.5, 0.5, 0.5)), nn.AdaptiveMaxPool3d((5, 7, 9)), nn.AdaptiveAvgPool3d((5, 7, 9)), ] ) # TODO max_unpool def forward(self): return len( ( [module(self.input1d) for i, module in enumerate(self.module1d)], [module(self.input2d) for i, module in enumerate(self.module2d)], [module(self.input3d) for i, module in enumerate(self.module3d)], ) ) class NNPaddingModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input1d = torch.randn(1, 4, 50) self.module1d = nn.ModuleList( [ nn.ReflectionPad1d(2), nn.ReplicationPad1d(2), nn.ConstantPad1d(2, 3.5), ] ) self.input2d = torch.randn(1, 4, 30, 10) self.module2d = nn.ModuleList( [ nn.ReflectionPad2d(2), nn.ReplicationPad2d(2), nn.ZeroPad2d(2), nn.ConstantPad2d(2, 3.5), ] ) self.input3d = torch.randn(1, 4, 10, 4, 4) self.module3d = nn.ModuleList( [ nn.ReflectionPad3d(1), nn.ReplicationPad3d(3), nn.ConstantPad3d(3, 3.5), ] ) def forward(self): return len( ( [module(self.input1d) for i, module in enumerate(self.module1d)], [module(self.input2d) for i, module in enumerate(self.module2d)], [module(self.input3d) for i, module in enumerate(self.module3d)], ) ) class NNNormalizationModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input1d = torch.randn(1, 4, 50) self.module1d = nn.ModuleList( [ nn.BatchNorm1d(4), nn.InstanceNorm1d(4), ] ) self.input2d = torch.randn(1, 4, 30, 10) self.module2d = nn.ModuleList( [ nn.BatchNorm2d(4), nn.GroupNorm(4, 4), nn.InstanceNorm2d(4), nn.LayerNorm([4, 30, 10]), nn.LocalResponseNorm(2), ] ) self.input3d = torch.randn(1, 4, 10, 4, 4) self.module3d = nn.ModuleList( [ nn.BatchNorm3d(4), nn.InstanceNorm3d(4), nn.ChannelShuffle(2), ] ) def forward(self): return len( ( [module(self.input1d) for i, module in enumerate(self.module1d)], [module(self.input2d) for i, module in enumerate(self.module2d)], [module(self.input3d) for i, module in enumerate(self.module3d)], ) ) class NNActivationModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.activations = nn.ModuleList( [ nn.ELU(), nn.Hardshrink(), nn.Hardsigmoid(), nn.Hardtanh(), nn.Hardswish(), nn.LeakyReLU(), nn.LogSigmoid(), # nn.MultiheadAttention(), nn.PReLU(), nn.ReLU(), nn.ReLU6(), nn.RReLU(), nn.SELU(), nn.CELU(), nn.GELU(), nn.Sigmoid(), nn.SiLU(), nn.Mish(), nn.Softplus(), nn.Softshrink(), nn.Softsign(), nn.Tanh(), nn.Tanhshrink(), # nn.Threshold(0.1, 20), nn.GLU(), nn.Softmin(), nn.Softmax(), nn.Softmax2d(), nn.LogSoftmax(), # nn.AdaptiveLogSoftmaxWithLoss(), ] ) def forward(self): input = torch.randn(2, 3, 4) return len(([module(input) for i, module in enumerate(self.activations)],)) class NNRecurrentModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.rnn = nn.ModuleList( [ nn.RNN(4, 8, 2), nn.RNNCell(4, 8), ] ) self.gru = nn.ModuleList([nn.GRU(4, 8, 2), nn.GRUCell(4, 8)]) self.lstm = nn.ModuleList( [ nn.LSTM(4, 8, 2), nn.LSTMCell(4, 8), ] ) def forward(self): input = torch.randn(5, 3, 4) h = torch.randn(2, 3, 8) c = torch.randn(2, 3, 8) r = self.rnn[0](input, h) r = self.rnn[1](input[0], h[0]) r = self.gru[0](input, h) r = self.gru[1](input[0], h[0]) r = self.lstm[0](input, (h, c)) r = self.lstm[1](input[0], (h[0], c[0])) return len(r) class NNTransformerModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.transformers = nn.ModuleList( [ nn.Transformer( d_model=2, nhead=2, num_encoder_layers=1, num_decoder_layers=1 ), nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=2, nhead=2), num_layers=1 ), nn.TransformerDecoder( nn.TransformerDecoderLayer(d_model=2, nhead=2), num_layers=1 ), ] ) def forward(self): input = torch.rand(1, 16, 2) tgt = torch.rand((1, 16, 2)) r = self.transformers[0](input, tgt) r = self.transformers[1](input) r = self.transformers[2](input, tgt) return len(r) class NNLinearModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linears = nn.ModuleList( [ nn.Identity(54), nn.Linear(20, 20), nn.Bilinear(20, 20, 40), # nn.LazyLinear(20, 30), ] ) def forward(self): input = torch.randn(32, 20) r = self.linears[0](input) r = self.linears[1](input) r = self.linears[2](input, input) return len(r) class NNDropoutModule(torch.nn.Module): def forward(self): a = torch.randn(8, 4) b = torch.randn(8, 4, 4, 4) c = torch.randn(8, 4, 4, 4, 4) return len( F.dropout(a), F.dropout2d(b), F.dropout3d(c), F.alpha_dropout(a), F.feature_alpha_dropout(c), ) class NNSparseModule(torch.nn.Module): def forward(self): input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]]) input2 = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]) embedding_matrix = torch.rand(10, 3) offsets = torch.tensor([0, 4]) return len( F.embedding(input, embedding_matrix), F.embedding_bag(input2, embedding_matrix, offsets), F.one_hot(torch.arange(0, 5) % 3, num_classes=5), ) class NNDistanceModule(torch.nn.Module): def forward(self): a = torch.randn(8, 4) b = torch.randn(8, 4) return len( F.pairwise_distance(a, b), F.cosine_similarity(a, b), F.pdist(a), ) class NNLossFunctionModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]]) self.y = torch.LongTensor([[3, 0, -1, 1]]) def forward(self): a = torch.randn(3, 2) b = torch.rand(3, 2) c = torch.rand(3) log_probs = torch.randn(50, 16, 20).log_softmax(2).detach() targets = torch.randint(1, 20, (16, 30), dtype=torch.long) input_lengths = torch.full((16,), 50, dtype=torch.long) target_lengths = torch.randint(10, 30, (16,), dtype=torch.long) return len( F.binary_cross_entropy(torch.sigmoid(a), b), F.binary_cross_entropy_with_logits(torch.sigmoid(a), b), F.poisson_nll_loss(a, b), F.cosine_embedding_loss(a, b, c), F.cross_entropy(a, b), F.ctc_loss(log_probs, targets, input_lengths, target_lengths), # F.gaussian_nll_loss(a, b, torch.ones(5, 1)), # ENTER is not supported in mobile module F.hinge_embedding_loss(a, b), F.kl_div(a, b), F.l1_loss(a, b), F.mse_loss(a, b), F.margin_ranking_loss(c, c, c), F.multilabel_margin_loss(self.x, self.y), F.multilabel_soft_margin_loss(self.x, self.y), F.multi_margin_loss(self.x, torch.tensor([3])), F.nll_loss(a, torch.tensor([1, 0, 1])), F.huber_loss(a, b), F.smooth_l1_loss(a, b), F.soft_margin_loss(a, b), F.triplet_margin_loss(a, b, -b), # F.triplet_margin_with_distance_loss(a, b, -b), # can't take variable number of arguments ) class NNVisionModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.input = torch.randn(1, 4, 9, 9) self.vision_modules = nn.ModuleList( [ nn.PixelShuffle(2), nn.PixelUnshuffle(3), nn.Upsample(scale_factor=2, mode="nearest"), nn.Upsample(scale_factor=2, mode="bilinear"), nn.Upsample(scale_factor=2, mode="bicubic"), nn.UpsamplingNearest2d(scale_factor=2), nn.UpsamplingBilinear2d(scale_factor=2), ] ) self.linear_sample = nn.Upsample(scale_factor=2, mode="linear") self.trilinear_sample = nn.Upsample(scale_factor=2, mode="trilinear") def forward(self): input = torch.randn(1, 3, 16, 16) for i, module in enumerate(self.vision_modules): r = module(self.input) return len( r, self.linear_sample(torch.randn(4, 9, 9)), self.trilinear_sample(torch.randn(1, 3, 4, 9, 9)), F.grid_sample(input, torch.ones(1, 4, 4, 2)), ) class NNShuffleModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.shuffle = nn.ChannelShuffle(2) def forward(self): return len( self.shuffle(torch.randn(1, 4, 2, 2)), ) class NNUtilsModule(torch.nn.Module): def __init__(self) -> None: super().__init__() self.flatten = nn.Sequential(nn.Linear(50, 50), nn.Unflatten(1, (2, 5, 5))) def forward(self): a = [torch.tensor([1, 2, 3]), torch.tensor([3, 4])] b = nn.utils.rnn.pad_sequence(a, batch_first=True) # c = nn.utils.rnn.pack_padded_sequence(b, batch_first=True, lengths=torch.tensor([3, 2])) input = torch.randn(2, 50) return len( self.flatten(input), b, )