import torch # https://pytorch.org/docs/stable/torch.html#random-sampling class SamplingOpsModule(torch.nn.Module): def forward(self): a = torch.empty(3, 3).uniform_(0.0, 1.0) size = (1, 4) weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) return len( # torch.seed(), # torch.manual_seed(0), torch.bernoulli(a), # torch.initial_seed(), torch.multinomial(weights, 2), torch.normal(2.0, 3.0, size), torch.poisson(a), torch.rand(2, 3), torch.rand_like(a), torch.randint(10, size), torch.randint_like(a, 4), torch.rand(4), torch.randn_like(a), torch.randperm(4), a.bernoulli_(), a.cauchy_(), a.exponential_(), a.geometric_(0.5), a.log_normal_(), a.normal_(), a.random_(), a.uniform_(), )