#define TORCH_ASSERT_ONLY_METHOD_OPERATORS // ${generated_comment} #include "torch/csrc/Device.h" #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/Exceptions.h" #include "torch/csrc/autograd/python_fft_functions.h" #include "torch/csrc/autograd/generated/python_return_types.h" #include "torch/csrc/autograd/python_variable.h" #include "torch/csrc/autograd/utils/wrap_outputs.h" #include "torch/csrc/autograd/utils/python_arg_parsing.h" #include "torch/csrc/autograd/generated/variable_factories.h" #include "torch/csrc/utils/out_types.h" #include "torch/csrc/utils/pycfunction_helpers.h" #include "torch/csrc/utils/python_arg_parser.h" #include "torch/csrc/utils/structseq.h" #include "torch/csrc/utils/device_lazy_init.h" #include #ifndef AT_PER_OPERATOR_HEADERS #include #else $ops_headers #endif using at::Tensor; using at::Device; using at::Layout; using at::Scalar; using at::ScalarType; using at::Backend; using at::OptionalDeviceGuard; using at::DeviceGuard; using at::TensorOptions; using at::IntArrayRef; using at::Generator; using at::TensorList; using at::Dimname; using at::DimnameList; using torch::utils::check_out_type_matches; using namespace torch::autograd::utils; namespace torch::autograd { // generated forward declarations start here ${py_forwards} static PyMethodDef fft_functions[] = { ${py_method_defs} {NULL} }; static PyObject* THPFFTVariableFunctionsModule = NULL; void initFFTFunctions(PyObject* module) { static struct PyModuleDef def = { PyModuleDef_HEAD_INIT, "torch._C._fft", NULL, -1, fft_functions }; PyObject* fft = PyModule_Create(&def); THPFFTVariableFunctionsModule = fft; if (!fft) { throw python_error(); } // steals a reference to fft if (PyModule_AddObject(module, "_fft", fft) != 0) { throw python_error(); } } // generated methods start here ${py_methods} } // namespace torch::autograd