#define TORCH_ASSERT_ONLY_METHOD_OPERATORS // ${generated_comment} #include "torch/csrc/Device.h" #include "torch/csrc/DynamicTypes.h" #include "torch/csrc/Exceptions.h" #include "torch/csrc/autograd/python_linalg_functions.h" #include "torch/csrc/autograd/generated/python_return_types.h" #include "torch/csrc/autograd/python_variable.h" #include "torch/csrc/autograd/utils/wrap_outputs.h" #include "torch/csrc/autograd/utils/python_arg_parsing.h" #include "torch/csrc/utils/pycfunction_helpers.h" #include "torch/csrc/utils/python_arg_parser.h" #include "torch/csrc/utils/structseq.h" #ifndef AT_PER_OPERATOR_HEADERS #include #else $ops_headers #endif using at::Tensor; using at::Scalar; using at::ScalarType; using at::MemoryFormat; using at::Generator; using at::IntArrayRef; using at::TensorList; using namespace torch::autograd::utils; namespace torch::autograd { // generated forward declarations start here ${py_forwards} static PyMethodDef linalg_functions[] = { ${py_method_defs} {NULL} }; static PyObject* THPLinalgVariableFunctionsModule = NULL; void initLinalgFunctions(PyObject* module) { static struct PyModuleDef def = { PyModuleDef_HEAD_INIT, "torch._C._linalg", NULL, -1, linalg_functions }; PyObject* linalg = PyModule_Create(&def); THPLinalgVariableFunctionsModule = linalg; if (!linalg) { throw python_error(); } // steals a reference to linalg if (PyModule_AddObject(module, "_linalg", linalg) != 0) { throw python_error(); } } // generated methods start here ${py_methods} } // namespace torch::autograd