#pragma once #include #include #include #include #include #include #include #include #include #include /** * Defines the public API for loading flatbuffer-serialized mobile modules. * Note that this header must not include or depend on flatbuffer-defined * types, to avoid leaking those details to PyTorch clients. */ namespace torch::jit { /// All non-copied data pointers provided to `parse_and_initialize_*` functions /// must be aligned to this boundary. Since the Module will point directly into /// the data, this alignment is necessary to ensure that certain types/structs /// are properly aligned. constexpr size_t kFlatbufferDataAlignmentBytes = 16; /// Maps file names to file contents. using ExtraFilesMap = std::unordered_map; // On high level, to produce a Module from a file on disk, we need to go // through the follow steps: // 1. Read: Read the file from disk -> memory // 2. Deserialize: Parse the bytes to produce some in memory manipulable // structure // 3. Module initialization: Produce mobile::Module out of the structure // produced in 2. // Under this context, the structure described in 2. is the flatbuffer-defined // type mobile::serialization::Module. However, this step/type is not visible in // the public API. // Parse a mobile::Module from raw bytes. // // This function does steps 2+3 described above. // // Does not take ownership of `data`; if you want it to take ownership, see the // shared_ptr overload of this function. // // If should_copy_tensor_memory is true, then the returned module will NOT have // refences to `data`, so `data` can be freed immediately. // // If should_copy_tensor_memory is false, then returned module will have tensors // that points inside of `data`; the caller will need to make sure that `data` // outlives the returned Module. Also, `data` must be aligned to // kFlatbufferDataAlignmentBytes. TORCH_API mobile::Module parse_and_initialize_mobile_module( void* data, size_t size, // of `data`, in bytes. std::optional device = std::nullopt, ExtraFilesMap* extra_files = nullptr, bool should_copy_tensor_memory = false); // Parse a mobile::Module from raw bytes. // // This function does steps 2+3 described above. // // The returned Module holds a reference to `data`, which must be aligned to // kFlatbufferDataAlignmentBytes. // // If you do not want the Module to hold a reference to `data`, see the raw // pointer overload of this function. TORCH_API mobile::Module parse_and_initialize_mobile_module( std::shared_ptr data, size_t size, // of `data`, in bytes. std::optional device = std::nullopt, ExtraFilesMap* extra_files = nullptr); // Parse a mobile::Module from raw bytes, also returning JIT-related metadata. // // This is the same as parse_and_initialize_mobile_module() except that it also // extracts JIT source files and constants. Can be used to construct a // jit::Module. TORCH_API mobile::Module parse_and_initialize_mobile_module_for_jit( void* data, size_t size, // of `data`, in bytes. ExtraFilesMap& jit_sources, std::vector& jit_constants, std::optional device = std::nullopt, ExtraFilesMap* extra_files = nullptr); // Load a mobile::Module from a filepath. // // This function does steps 1+2+3 described above. // // We need to have this as a convienience because Python API will need to wrap // this. C++ clients should use one of the versions of // parse_and_initialize_mobile_module() so they can manage the raw data more // directly. TORCH_API mobile::Module load_mobile_module_from_file( const std::string& filename, std::optional device = std::nullopt, ExtraFilesMap* extra_files = nullptr); TORCH_API uint64_t get_bytecode_version(std::istream& in); TORCH_API uint64_t get_bytecode_version(const std::string& filename); TORCH_API uint64_t get_bytecode_version_from_bytes(char* flatbuffer_content); TORCH_API mobile::ModuleInfo get_module_info_from_flatbuffer( char* flatbuffer_content); // The methods below are less efficient because it need to read the stream in // its entirity to a buffer TORCH_API mobile::Module load_mobile_module_from_stream_with_copy( std::istream& in, std::optional device = std::nullopt, ExtraFilesMap* extra_files = nullptr); TORCH_API mobile::Module parse_flatbuffer_no_object( std::shared_ptr data, size_t size, std::optional device); TORCH_API mobile::Module parse_and_initialize_mobile_module( void* data, size_t, std::optional, ExtraFilesMap* extra_files, bool should_copy_tensor_memory); // no op, TODO(qihan) delete TORCH_API bool register_flatbuffer_loader(); } // namespace torch::jit