# mypy: allow-untyped-defs import functools import logging from enum import auto, Enum from typing import Any, Callable, Dict, List, no_type_check, Optional, Set, Tuple import torch import torch.distributed as dist import torch.distributed.fsdp._traversal_utils as traversal_utils import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from torch.autograd.graph import register_multi_grad_hook from torch.distributed.algorithms._comm_hooks import LOW_PRECISION_HOOKS from torch.distributed.fsdp._common_utils import ( _assert_in_training_states, _FSDPState, _get_module_fsdp_state, _is_composable, _log_post_backward_hook, _no_dispatch_record_stream, clean_tensor_name, TrainingState, ) from torch.distributed.fsdp._flat_param import ( FlatParameter, FlatParamHandle, HandleShardingStrategy, HandleTrainingState, RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES, ) from torch.distributed.fsdp._init_utils import HYBRID_SHARDING_STRATEGIES from torch.distributed.fsdp.api import BackwardPrefetch from torch.distributed.utils import ( _apply_to_tensors, _cast_forward_inputs, _p_assert, _to_kwargs, ) from torch.utils import _pytree as pytree logger = logging.getLogger(__name__) # Do not include "process_group" to enable hybrid shard and MoE cases HOMOGENEOUS_ATTR_NAMES = ( "_use_orig_params", "limit_all_gathers", "_use_full_prec_in_eval", ) class _PrefetchMode(Enum): BACKWARD = auto() FORWARD = auto() def _get_fsdp_root_states_with_modules( module: nn.Module, ) -> Tuple[List[_FSDPState], List[nn.Module]]: """ Returns a tuple containing: 1. A list of the root ``_FSDPState`` instances in the module tree rooted at ``module`` without any duplicates and following the ``module.modules()`` traversal order (which is assumed to be depth-first). 2. A corresponding list of the root modules owning the states in the first list. This is similar to :func:`_get_fsdp_states_with_modules` except that we must call :func:`_is_fsdp_root` to force a lazy initialization to determine the FSDP root in case lazy initialization has not yet happened. """ fsdp_root_states: List[_FSDPState] = [] fsdp_root_modules: List[nn.Module] = [] visited_fsdp_states: Set[_FSDPState] = set() # NOTE: This function assumes that `module.modules()` proceeds top-down. for submodule in module.modules(): optional_state = _get_module_fsdp_state(submodule) if ( optional_state is not None and optional_state not in visited_fsdp_states and _is_fsdp_root(optional_state, submodule) ): visited_fsdp_states.add(optional_state) fsdp_root_states.append(optional_state) fsdp_root_modules.append(submodule) return fsdp_root_states, fsdp_root_modules def _get_fsdp_root_states(module: nn.Module) -> List[_FSDPState]: """See :func:`_get_fsdp_root_states_with_modules`.""" fsdp_root_states, _ = _get_fsdp_root_states_with_modules(module) return fsdp_root_states def _is_fsdp_root(state: _FSDPState, module: nn.Module) -> bool: """ Returns if ``state`` corresponds to that of an FSDP root. For the wrapper code path, ``state`` and ``module`` should be the same. For the non-wrapper code path, ``state`` should be ``module`` 's state. """ # Force a lazy initialization to determine the FSDP root _lazy_init(state, module) assert state._is_root is not None # mypy return state._is_root @no_type_check def _lazy_init( state: _FSDPState, root_module: nn.Module, ) -> _FSDPState: """ Performs initialization lazily, typically right before the first forward pass. The laziness is needed to ensure that the parameter device/dtype and the FSDP hierarchy have finalized. This method's actual logic only runs on the root FSDP instance, which performs initialization for all non-root FSDP instances to avoid partial initialization. For the non-composable code path, ``state`` and ``root_module`` should be the same, namely the FSDP instance itself. """ if state._is_root is not None: return # no-op: already lazily initialized if not state._device_handle.is_available(): # Allow the FSDP constructor to run even without CUDA but check this # once we start real execution raise RuntimeError("FSDP does not support CPU only execution") # The following logic is only run on the root FSDP instance since it will # set `_is_root=False` for the non-root instances state._is_root = True _assert_in_training_states(state, [TrainingState.IDLE]) _check_flat_params_on_expected_device(state, root_module) state._all_fsdp_states = traversal_utils._get_fsdp_states(root_module) _init_streams(state) buffers, buffer_dtypes = _get_buffers_and_dtypes_for_computation(state, root_module) _cast_buffers_to_dtype_and_device(buffers, buffer_dtypes, state.compute_device) state._exec_order_data.init(state, root_module, state.process_group) _share_state_and_init_handle_attrs(state, root_module) return state def _check_flat_params_on_expected_device(state: _FSDPState, module: nn.Module): """ Checks that all ``FlatParameter``s in ``module`` 's tree managed by ``state`` are on the expected device for *lazy initialization*. """ cpu_device = torch.device("cpu") for handle in traversal_utils._get_fsdp_handles(module): if ( not handle._offload_params and handle.flat_param.device != state.compute_device ): raise RuntimeError( "An FSDP-managed module unexpectedly has parameters on " f"{handle.flat_param.device}. Make sure to move the module to " f"{state.compute_device} before training." ) elif handle._offload_params and handle.flat_param.device != cpu_device: raise RuntimeError( "An FSDP-managed module with parameter CPU offloading enabled " f"has parameters on {handle.flat_param.device}. Make sure to " f"not move the module from CPU when offloading parameters." ) @no_type_check def _share_state_and_init_handle_attrs( root_state: _FSDPState, root_module: nn.Module, ) -> None: """ Shares data structure state from the ``root_state`` to all FSDP states in ``root_module`` 's module tree, and initializes handle attributes. These are done together to require a single loop over the states. """ handle = root_state._handle if handle: handle.init_flat_param_attributes() attr_name_to_values: Dict[str, Set[Any]] = {} for attr_name in HOMOGENEOUS_ATTR_NAMES: attr_name_to_values[attr_name] = set() root_state._all_handles = root_state._exec_order_data.all_handles # share reference # Update _has_optim_in_backward for each handle. for handle in root_state._all_handles: flat_param = handle.flat_param if hasattr(flat_param, "_in_backward_optimizers"): raise RuntimeError( "FSDP optimizer in backward only supported with use_orig_params=True!" ) handle._has_optim_in_backward = flat_param._params is not None and any( hasattr(param, "_in_backward_optimizers") for param in flat_param._params ) if handle._has_optim_in_backward: torch._C._log_api_usage_once("fsdp.optimizer_in_backward") for fsdp_state in root_state._all_fsdp_states: for attr_name in HOMOGENEOUS_ATTR_NAMES: _p_assert( hasattr(fsdp_state, attr_name), f"FSDP state missing attribute {attr_name}", ) attr_name_to_values[attr_name].add(getattr(fsdp_state, attr_name)) if fsdp_state is root_state: continue # Relax the assert for non-root FSDP instances in case the nested # initialized module is wrapped again in FSDP later (e.g. after # training to run inference) _p_assert( fsdp_state._is_root is None or not fsdp_state._is_root, "Non-root FSDP instance's `_is_root` should not have been " "set yet or should have been set to `False`", ) fsdp_state._is_root = False fsdp_state._unshard_stream = root_state._unshard_stream fsdp_state._post_backward_stream = root_state._post_backward_stream fsdp_state._pre_unshard_stream = root_state._pre_unshard_stream fsdp_state._all_reduce_stream = root_state._all_reduce_stream fsdp_state._default_stream = root_state._default_stream fsdp_state._exec_order_data = root_state._exec_order_data fsdp_state._free_event_queue = root_state._free_event_queue if fsdp_state._fsdp_extension is not None: fsdp_state._fsdp_extension.compute_stream = root_state._default_stream handle = fsdp_state._handle if handle: handle.init_flat_param_attributes() for attr_name, attr_values in attr_name_to_values.items(): if len(attr_values) != 1: raise ValueError( f"Expects one homogeneous value for {attr_name} but got {attr_values}" ) @no_type_check def _init_streams( state: _FSDPState, ) -> None: """ Initializes CUDA streams for overlapping communication, computation, and data transfers. The streams should be shared across FSDP instances. """ assert state._is_root assert state._device_handle.is_available() uses_hybrid_sharding = any( fsdp_state.sharding_strategy in HYBRID_SHARDING_STRATEGIES for fsdp_state in state._all_fsdp_states ) # Prioritize all-gathers/reduce-scatters over async all-reduce for HSDP and # preserve the default priority of 0 otherwise high_priority = -1 if state.limit_all_gathers and uses_hybrid_sharding else 0 # Default stream for computation state._default_stream = state._device_handle.current_stream() if state._fsdp_extension is not None: # set the compute stream to the FSDP extension state._fsdp_extension.compute_stream = state._default_stream # Stream for unshard logic, including allocating the all-gather destination # tensors and the all-gathers themselves state._unshard_stream = state._device_handle.Stream(priority=high_priority) # Stream for overlapping gradient reduction with the backward pass gradient # computation state._post_backward_stream = state._device_handle.Stream(priority=high_priority) # Stream for pre-unshard logic, namely allocations and writes for CPU # offloading (H2D copy) and mixed precision (low precision cast) state._pre_unshard_stream = state._device_handle.Stream(priority=high_priority) # Stream to run HSDP's all-reduce as async (if using HSDP) state._all_reduce_stream = ( state._device_handle.Stream() if uses_hybrid_sharding else state._default_stream ) @no_type_check def _unshard( state: _FSDPState, handle: FlatParamHandle, unshard_stream: torch.Stream, pre_unshard_stream: torch.Stream, ) -> None: """ Unshards the handles in ``handles``. If the handles are in :meth:`summon_full_params` and are using mixed precision, then they are forced to full precision. Postcondition: handle's ``FlatParameter`` 's data is the padded unsharded flat parameter on the compute device. """ if not handle: return with state._device_handle.stream(pre_unshard_stream): ran_pre_unshard = handle.pre_unshard() if ran_pre_unshard: unshard_stream.wait_stream(pre_unshard_stream) if state.limit_all_gathers: event = state._free_event_queue.dequeue_if_needed() if event: with torch.profiler.record_function( "FullyShardedDataParallel.rate_limiter" ): event.synchronize() with state._device_handle.stream(unshard_stream): handle.unshard() handle.post_unshard() @no_type_check def _reshard( state: _FSDPState, handle: FlatParamHandle, free_unsharded_flat_param: bool, ): """ Reshards the handle. ``free_unsharded_flat_param`` indicates whether to free the handle's padded unsharded flat parameter. """ handle.reshard(free_unsharded_flat_param) if state.limit_all_gathers and free_unsharded_flat_param: if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): # We don't run a even queue for freeing under torch compile atm # But maybe we need to? TODO(voz): Look into this free_event = state._device_handle.Event() free_event.record() state._free_event_queue.enqueue(free_event) handle.post_reshard() # Flat parameter freed or not, we always have to "unshard" the parameter # upon next access to get its shape correct. handle._prefetched = False def _unshard_grads( handle: Optional[FlatParamHandle], ) -> None: if handle: handle.unshard_grad() def _reshard_grads( handle: Optional[FlatParamHandle], ) -> None: if handle: handle.reshard_grad() @no_type_check def _pre_forward( state: _FSDPState, handle: Optional[FlatParamHandle], unshard_fn: Callable, module: nn.Module, args: Tuple[Any, ...], kwargs: Dict[str, Any], ) -> Tuple[Tuple[Any, ...], Dict[str, Any]]: """ Runs the pre-forward logic. This includes an opportunity to unshard currently sharded parameters such as those for the current forward and registering post-backward hooks for these current parameters. This function also converts forward ``args`` and ``kwargs`` to the given precision. Args: handles (List[FlatParamHandle]): Handles giving the parameters used in the current forward. unshard_fn (Optional[Callable]): A callable to unshard any currently sharded parameters or ``None`` to not do any unsharding. module (nn.Module): Module whose forward this method runs right before; expected by the hook signature. args (Tuple[Any, ...]): Module forward ``args``. kwargs (Dict[str, Any]): Module forward ``kwargs``. """ with torch.profiler.record_function("FullyShardedDataParallel._pre_forward"): # For `fully_shard` + `checkpoint`, skip pre-forward logic in the # recomputed forward if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE: # For both checkpoint implementations, we do not need to re-cast # inputs here since they will be checkpointed in the low precision # either by AC or normally by autograd as long as the AC region is # nested within FSDP return args, kwargs state.training_state = TrainingState.FORWARD_BACKWARD state._exec_order_data.record_pre_forward(handle, module.training) if handle: handle._training_state = HandleTrainingState.FORWARD if unshard_fn is not None: unshard_fn(state, handle) # Register post-backward hooks to reshard the parameters and reduce-scatter # their gradients. They must be re-registered every forward pass in case # the `grad_fn` is mutated. _register_post_backward_hook(state, handle) # We have to reallocate the _cpu_grad if optimizer overlap # set the grad to None in the backward pass. if handle and handle._offload_params and handle.flat_param._cpu_grad is None: handle.flat_param._cpu_grad = torch.zeros_like( handle.flat_param._local_shard, device=torch.device("cpu") ).pin_memory(device=state.compute_device) should_cast_forward_inputs = ( state._handle and not state._handle._force_full_precision ) if should_cast_forward_inputs and state.mixed_precision.cast_forward_inputs: # Recursively convert args and kwargs to specified precision. input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs) _register_post_backward_reshard_only_hook(state, handle, args, kwargs) return args, kwargs @no_type_check def _pre_forward_unshard( state: _FSDPState, handle: Optional[FlatParamHandle], ) -> None: """Unshards parameters in the pre-forward.""" if not handle: return # If the handles have been prefetched, then there is no need to call # `_unshard()` again if not handle._prefetched: _unshard(state, handle, state._unshard_stream, state._pre_unshard_stream) handle._needs_pre_forward_unshard = False # Don't wait during trace if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): current_stream = state._device_handle.current_stream() if state._unshard_event is not None: current_stream.wait_event(state._unshard_event) state._unshard_event = None else: current_stream.wait_stream(state._unshard_stream) with torch.profiler.record_function( "FullyShardedDataParallel._pre_forward_prefetch" ): _prefetch_handle(state, handle, _PrefetchMode.FORWARD) @no_type_check def _post_forward( state: _FSDPState, handle: Optional[FlatParamHandle], reshard_fn: Callable, module: nn.Module, input: Any, output: Any, ) -> Any: """ Runs the post-forward logic. This includes an opportunity to reshard currently unsharded parameters such as those used in the current forward and registering pre-backward hooks on the forward outputs. Args: handles (List[FlatParamHandle]): Handles giving the parameters used in the current forward. reshard_fn (Optional[Callable]): A callable to reshard any currently unsharded parameters (e.g. from the current forward) or ``None`` to not do any resharding. module (nn.Module): Module whose forward just ran, which should be a fully sharded module (see [Note: Fully Sharded Module]); expected by the hook signature. input (Any): Unused; expected by the hook signature. output (Any): Forward pass output; pre-backward hooks are registered on the tensors that require gradients in this output. Postcondition: Each ``FlatParameter`` 's data points to the sharded flat parameter. """ with torch.profiler.record_function("FullyShardedDataParallel._post_forward"): # For `fully_shard` + `checkpoint`, skip post-forward logic in the # recomputed forward if handle and handle._training_state == HandleTrainingState.BACKWARD_PRE: return output state._exec_order_data.record_post_forward(handle) if reshard_fn is not None: reshard_fn(state, handle) # Register pre-backward hooks to unshard the flat parameters for the # gradient computation (if needed) output = _register_pre_backward_hooks(state, module, output, handle) state.training_state = TrainingState.IDLE if handle: handle._training_state = HandleTrainingState.IDLE return output @no_type_check def _post_forward_reshard( state: _FSDPState, handle: FlatParamHandle, ) -> None: """Reshards parameters in the post-forward.""" if not handle: return # Do not free the root's parameters in the post-forward for `FULL_SHARD` # with the intention that they are immediately used for backward # computation (though this may not be true) free_unsharded_flat_param = ( not state._is_root and handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES ) _reshard(state, handle, free_unsharded_flat_param) @no_type_check def _root_pre_forward( state: _FSDPState, module: nn.Module, args, kwargs, ) -> None: """ Runs pre-forward logic specific to the root FSDP instance, which should run before any individual module's pre-forward. This starts with an attempt at lazy initialization (which only runs non-vacuously once). Otherwise, if this is called on a non-root FSDP instance, then it returns directly. Args: module (nn.Module): Module for which this logic tries to run. It may or may not be the root. If not, then this method does not do anything. """ with torch.profiler.record_function("FullyShardedDataParallel._root_pre_forward"): _lazy_init(state, module) _p_assert(state._is_root is not None, "Expects a root FSDP to have been set") if not state._is_root: # Always cast forward inputs in the root of this local FSDP unit for mixed # precision, as this is where mixed precision could be configed. # This is more useful for auto wrapping that is recommended in composable path. # For manual wrapping, cast forward inputs on each local FSDP unit root will # increase some overhead, so not turned on for model wrapper path right now where # manual wrapping is more broadly used. if _is_composable(state): return _root_cast_forward_input(state, module, args, kwargs) return args, kwargs # We cast buffers back to full precision if we're forcing full precision. Disjointly, we check if buffers # are in full precision and if we should cast them back to lower precision, which happens when # exiting eval() mode. handle = state._handle if handle: should_cast_buffers_to_full_prec = handle._force_full_precision else: should_cast_buffers_to_full_prec = True if should_cast_buffers_to_full_prec: _cast_buffers_to_dtype_and_device( buffers=dict(module.named_buffers()).values(), buffer_dtypes=list(state._buffer_name_to_orig_dtype.values()), device=state.compute_device, ) # This flag is only set when we cast buffers to full precision, to avoid the # CPU overhead that can stem from retrieving all buffers and their types in the # following else branch. state._needs_buffer_dtype_restore_check = True elif getattr(state, "_needs_buffer_dtype_restore_check", False): # Check if buffers are in full precision and we need to cast them # back down. ( buffers, buffer_dtypes_for_computation, ) = _get_buffers_and_dtypes_for_computation(state, module) if len(buffers) > 0 and len(buffer_dtypes_for_computation) > 0: if any( buffer.dtype != buffer_dtype_for_computation for buffer, buffer_dtype_for_computation in zip( buffers, buffer_dtypes_for_computation ) ): # Assume we have to cast everything if there is one mismatch _cast_buffers_to_dtype_and_device( buffers, buffer_dtypes_for_computation, state.compute_device ) # We don't have to check this again until we cast buffers to full precision again. state._needs_buffer_dtype_restore_check = False if state.forward_prefetch: handles = [] for fsdp_state in state._all_fsdp_states: if fsdp_state._handle: handles.append(fsdp_state._handle) for handle in handles: handle._needs_pre_forward_unshard = True handle._prefetched = False _wait_for_computation_stream( state._device_handle.current_stream(), state._unshard_stream, state._pre_unshard_stream, ) _reset_flat_param_grad_info_if_needed(state._all_handles) # Prepares the forward inputs by moving them to ``compute_device`` # TODO: Do not use the side stream for tensor copies for now; investigate # the perf with/without it. with torch.profiler.record_function("FullyShardedDataParallel._to_kwargs"): args_tuple, kwargs_tuple = _to_kwargs( args, kwargs, state.compute_device, False ) args = args_tuple[0] kwargs = kwargs_tuple[0] return _root_cast_forward_input(state, module, args, kwargs) @no_type_check def _root_cast_forward_input( state: _FSDPState, module: torch.nn.Module, args, kwargs ) -> Tuple[Any, Any]: if state._handle: force_full_precision = not state._handle._force_full_precision else: force_full_precision = True should_cast_forward_inputs = ( (module.training or not state._use_full_prec_in_eval) and force_full_precision ) and state.mixed_precision.cast_root_forward_inputs if should_cast_forward_inputs: input_dtype: Optional[torch.dtype] = state.mixed_precision.param_dtype args, kwargs = _cast_forward_inputs(input_dtype, *args, **kwargs) return args, kwargs @no_type_check def _pre_backward_hook( state: _FSDPState, module: nn.Module, handle: FlatParamHandle, grad, *unused: Any, ) -> Any: """ Prepares ``_handle`` 's ``FlatParameter`` s for gradient computation. Args: module (nn.Module): Fully sharded module (see [Note: Fully Sharded Module]). """ # Only run the pre-backward hook once per group of handles involved in the # same module forward computation if ( handle and hasattr(handle, "_ran_pre_backward_hook") and handle._ran_pre_backward_hook ): return grad with torch.profiler.record_function("FullyShardedDataParallel._pre_backward_hook"): # Queue the post-backward callback once for the root FSDP instance to # attach it to the outermost backward graph task so that it is called # after all backward calls complete if state._is_root and not state._post_backward_callback_queued: _register_post_backward_final_callback(state, module) _reset_flat_param_grad_info_if_needed(state._all_handles) elif handle: allowed_states = [TrainingState.IDLE] if _is_composable(state): allowed_states.append(TrainingState.FORWARD_BACKWARD) _assert_in_training_states(state, allowed_states) state.training_state = TrainingState.FORWARD_BACKWARD # Queueing the post-backward callback is the only logic that is not # per-handle in the pre-backward hook, so we can return early here if # there are no handles. if not handle: return grad handle._training_state = HandleTrainingState.BACKWARD_PRE if handle._needs_pre_backward_unshard: # If the handles have been prefetched, then there is no need to # call `_unshard()` again if not handle._prefetched: _unshard( state, handle, state._unshard_stream, state._pre_unshard_stream, ) # Don't wait during trace if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): state._device_handle.current_stream().wait_stream(state._unshard_stream) # Set this to `False` to ensure that a mistargeted prefetch does not # actually unshard these handles handle._needs_pre_backward_unshard = False with torch.profiler.record_function( "FullyShardedDataParallel._pre_backward_prefetch" ): _prefetch_handle(state, handle, _PrefetchMode.BACKWARD) handle.prepare_gradient_for_backward() handle._ran_pre_backward_hook = True return grad @no_type_check @torch.no_grad() def _post_backward_hook( state: _FSDPState, handle: FlatParamHandle, flat_param, *unused: Any, ): """ Reduce-scatters the gradient of ``handle`` 's ``FlatParameter``. Precondition: The ``FlatParameter`` 's ``.grad`` attribute contains the unsharded gradient for the local batch. Postcondition: - If using ``NO_SHARD``, then the ``.grad`` attribute is the reduced unsharded gradient. - Otherwise, the ``_saved_grad_shard`` attribute is the reduced sharded gradient (accumulating with any existing gradient). """ _log_post_backward_hook(state, handle, logger) flat_param = handle.flat_param flat_param._post_backward_called = True with torch.autograd.profiler.record_function( "FullyShardedDataParallel._post_backward_hook" ): _assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD]) # For multiple applications of reentrant AC across submodules sharing # the same `FlatParameter`, the post-backward hook may run multiple # times in one backward, in which case we permit the state to already # be in `BACKWARD_POST`. _p_assert( handle._training_state in (HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST), f"Expects `BACKWARD_PRE` or `BACKWARD_POST` state but got {handle._training_state}", ) handle._training_state = HandleTrainingState.BACKWARD_POST if flat_param.grad is None: return if flat_param.grad.requires_grad: raise RuntimeError("FSDP does not support gradients of gradients") _post_backward_reshard(state, handle) if not state._sync_gradients: if handle._use_orig_params: handle._use_unsharded_grad_views() return # Wait for all ops in the current stream (e.g. gradient computation) to # finish before reduce-scattering the gradient if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): state._post_backward_stream.wait_stream( state._device_handle.current_stream() ) with state._device_handle.stream(state._post_backward_stream): autograd_computed_grad = flat_param.grad.data if ( not _low_precision_hook_enabled(state) and flat_param.grad.dtype != handle._reduce_dtype # If we are forcing full precision but communicating grads # (i.e. model.eval() + full precision in eval was configured), don't downcast gradient. and not handle._force_full_precision ): flat_param.grad.data = flat_param.grad.to(handle._reduce_dtype) if handle.uses_sharded_strategy: _reduce_grad(state, handle) else: _reduce_grad_no_shard(state, handle) # Since the unsharded gradient is produced in the computation # stream and consumed in the post-backward stream, inform the # caching allocator (before it goes out of scope) _no_dispatch_record_stream( autograd_computed_grad, state._post_backward_stream ) def _post_backward_reshard_only_hook( state: _FSDPState, handle: FlatParamHandle, *unused: Any, ) -> None: with torch.profiler.record_function( "FullyShardedDataParallel._post_backward_hook_reshard_only" ): # `_pre_backward_hook` may not get executed # if forward output does not require grad # overwrite IDLE state for post-backward prefetching state.training_state = TrainingState.FORWARD_BACKWARD handle._training_state = HandleTrainingState.BACKWARD_POST _post_backward_reshard(state, handle) def _post_backward_reshard( state: _FSDPState, handle: FlatParamHandle, *unused: Any, ) -> None: free_unsharded_flat_param = _should_free_in_backward(state, handle) _reshard(state, handle, free_unsharded_flat_param) # TODO: Post-backward prefetching does not support the multiple handles # per module case since the post-backward hook runs per handle, not per # group of handles. with torch.profiler.record_function( "FullyShardedDataParallel._post_backward_prefetch" ): _prefetch_handle(state, handle, _PrefetchMode.BACKWARD) @no_type_check def _should_free_in_backward( state: _FSDPState, handle: FlatParamHandle, ) -> bool: """ Returns whether FSDP should free the unsharded flat parameter in the post-backward or not. """ if not handle.uses_sharded_strategy: return False # If not syncing gradients, then we do not free for strategies that do not # reshard after forward as a *heuristic* to tradeoff higher memory for # higher throughput. return ( state._sync_gradients or handle._sharding_strategy in RESHARD_AFTER_FORWARD_HANDLE_STRATEGIES ) @no_type_check def _reduce_grad(state: _FSDPState, handle: FlatParamHandle) -> None: """ For sharded strategies, this runs gradient reduction, sharded gradient accumulation if needed, and the post-reduction callback. """ flat_param = handle.flat_param uses_hybrid_sharded_strategy = handle._sharding_strategy in ( HandleShardingStrategy.HYBRID_SHARD, HandleShardingStrategy._HYBRID_SHARD_ZERO2, ) # We clear `.grad` to permit multiple backwards. This avoids a race where # the second backward pass computation precedes ahead of the first backward # pass reduction, which is possible since the reduction is issued in a # separate stream and is async and would result in reducing the wrong # gradient. unsharded_grad = flat_param.grad.data flat_param.grad = None padded_unsharded_grad, new_sharded_grad = _get_reduce_scatter_tensors( state, unsharded_grad ) if state._comm_hook is None: # default path _div_if_needed(padded_unsharded_grad, state._gradient_predivide_factor) pg = ( handle._fake_process_group if handle._use_fake_reduce else state.process_group ) dist.reduce_scatter_tensor( new_sharded_grad, padded_unsharded_grad, group=pg, ) if uses_hybrid_sharded_strategy: # Don't wait during trace if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): state._all_reduce_stream.wait_stream(state._post_backward_stream) with state._device_handle.stream(state._all_reduce_stream): # Since the new sharded gradient is produced in the post- # backward stream and consumed in the all-reduce stream, # inform the caching allocator _no_dispatch_record_stream(new_sharded_grad, state._all_reduce_stream) dist.all_reduce(new_sharded_grad, group=state._inter_node_pg) _div_if_needed(new_sharded_grad, state._gradient_postdivide_factor) grad_to_offload = _accumulate_sharded_grad( state, handle, new_sharded_grad ) _post_reduce_grad_callback(state, handle, grad_to_offload) return _div_if_needed(new_sharded_grad, state._gradient_postdivide_factor) else: state._comm_hook( state._comm_hook_state, padded_unsharded_grad, new_sharded_grad ) # NOTE: HSDP variants do not support communication hook. grad_to_offload = _accumulate_sharded_grad(state, handle, new_sharded_grad) _post_reduce_grad_callback(state, handle, grad_to_offload) @no_type_check def _get_reduce_scatter_tensors( state: _FSDPState, unsharded_grad: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns the input and output tensors to reduce-scatter, respectively. """ chunks = list(unsharded_grad.chunk(state.world_size)) numel_to_pad = state.world_size * chunks[0].numel() - unsharded_grad.numel() padded_unsharded_grad = ( F.pad(unsharded_grad, [0, numel_to_pad]) if numel_to_pad > 0 else unsharded_grad ) new_sharded_grad = torch.empty_like(chunks[0]) # padded return padded_unsharded_grad, new_sharded_grad @no_type_check def _accumulate_sharded_grad( state: _FSDPState, handle: FlatParamHandle, sharded_grad: torch.Tensor, ) -> torch.Tensor: """ Accumulates the reduce-scattered sharded gradient with any existing sharded gradient if needed, returning the gradient to offload (if CPU offloading is enabled). """ flat_param = handle.flat_param _cast_grad_to_param_dtype(state, sharded_grad, flat_param) # Save the sharded gradient in `_saved_grad_shard` to support gradient # accumulation -- for multiple backwards, the gradient reductions may # happen in arbitrary order accumulate_grad = hasattr(flat_param, "_saved_grad_shard") if accumulate_grad: _check_grad_to_accumulate(sharded_grad, flat_param._saved_grad_shard) flat_param._saved_grad_shard += sharded_grad else: flat_param._saved_grad_shard = sharded_grad grad_to_offload = flat_param._saved_grad_shard return grad_to_offload @no_type_check def _reduce_grad_no_shard(state: _FSDPState, handle: FlatParamHandle) -> None: """ For no-shard, this runs gradient reduction (which directly covers any gradient accumulation implicitly) and the post-reduction callback. """ flat_param = handle.flat_param if state._comm_hook is None: # default path _div_if_needed(flat_param.grad, state._gradient_predivide_factor) dist.all_reduce(flat_param.grad, group=state.process_group) _div_if_needed(flat_param.grad, state._gradient_postdivide_factor) else: state._comm_hook(state._comm_hook_state, flat_param.grad) # For `NO_SHARD`, we can keep the low precision gradients by simply # omitting the cast altogether if not handle._keep_low_precision_grads: _cast_grad_to_param_dtype(state, flat_param.grad, flat_param) grad_to_offload = flat_param.grad.data _post_reduce_grad_callback(state, handle, grad_to_offload) @no_type_check def _post_reduce_grad_callback( state: _FSDPState, handle: FlatParamHandle, # Additional arguments needed for the callback logic grad_to_offload: torch.Tensor, ): """ This callback captures any logic to run after the gradient reduction finishes. Currently, this offloads the gradient to CPU if CPU offloading is enabled and uses sharded gradient views if ``use_orig_params=True``. """ _offload_grad(state, handle, grad_to_offload) _post_backward_use_sharded_grad_views(handle) @no_type_check def _offload_grad( state: _FSDPState, handle: FlatParamHandle, grad_to_offload: torch.Tensor, ): if not handle._offload_params: return # Offload the gradient to CPU to ensure parameters and gradients are on the # same device as required by the optimizer # TODO: Investigate why `NO_SHARD` breaks correctness when using # `non_blocking=True` here. # TODO (rohan-varma): When CPU offload and optimizer overlap, # non_blocking=True won't work since the copy may have not finished before # the optimizer step executes on CPU. If we want to use non-blocking=True # here, we'll have to synchronize before using result on CPU. non_blocking = handle.uses_sharded_strategy and not handle._has_optim_in_backward handle.flat_param._cpu_grad.copy_( grad_to_offload.detach(), non_blocking=non_blocking ) # synchronized in the post-backward callback # Since the gradient being offloaded may have been produced in the # computation stream and is being consumed here in the post-backward # stream, inform the caching allocator _no_dispatch_record_stream(grad_to_offload.data, state._post_backward_stream) @no_type_check def _post_backward_use_sharded_grad_views(handle: FlatParamHandle): if not handle._use_orig_params: return # Since the handle's `FlatParameter` completed its gradient computation, we # should reset the gradient noneness mask handle._reset_is_grad_none() # Delay using sharded gradient views until after the reduce-scatter instead # of immediately after resharding handle._use_sharded_grad_views() if handle._has_optim_in_backward: handle.prepare_gradient_for_optim() for orig_param in handle.flat_param._params: # Check for `None` gradient to filter parameters not in the rank if orig_param.grad is not None and hasattr( orig_param, "_in_backward_optimizers" ): # TODO (rohan-varma): For CPU offload, this unfortunately # operates on CPU because the parameters and gradients have # already been offloaded. We should run this on GPU after # refactoring. for optim in orig_param._in_backward_optimizers: optim.step() optim.zero_grad(set_to_none=True) handle._reset_flat_param_grad_info_if_needed() if handle._offload_params: handle.flat_param._cpu_grad = None def _div_if_needed(tensor: torch.Tensor, div_factor: float) -> None: if div_factor > 1: tensor.div_(div_factor) @no_type_check def _cast_grad_to_param_dtype( state: _FSDPState, sharded_grad: torch.Tensor, param: FlatParameter, ): """ Casts ``sharded_grad`` back to the full parameter dtype so that the optimizer step runs with that dtype. This performs an actual cast if 1. parameters were in reduced precision during the forward since then gradients would be in that reduced precision, or 2. parameters were not in reduced precision but gradients were in reduced precision for communication. However, if a low precision communication hook is registered, then this dtype cast happens in the hook instead. """ _assert_in_training_states(state, [TrainingState.FORWARD_BACKWARD]) if not _low_precision_hook_enabled(state) and sharded_grad.dtype != param.dtype: low_prec_grad_data = sharded_grad.data sharded_grad.data = sharded_grad.data.to(dtype=param.dtype) # Since for `NO_SHARD`, the gradient is produced in the computation # stream and consumed here in the post-backward stream, inform the # caching allocator; for the sharded strategies, the gradient is # produced in the post-backward stream, so this `record_stream()` # should be a no-op _no_dispatch_record_stream( low_prec_grad_data, state._device_handle.current_stream() ) def _check_grad_to_accumulate( new_sharded_grad: torch.Tensor, accumulated_grad: torch.Tensor, ) -> None: _p_assert( accumulated_grad.shape == new_sharded_grad.shape, "Shape mismatch when accumulating gradients: " f"existing gradient shape={accumulated_grad.shape} " f"new gradient shape={new_sharded_grad.shape}", ) _p_assert( accumulated_grad.device == new_sharded_grad.device, "Device mismatch when accumulating gradients: " f"existing gradient device={accumulated_grad.device} " f"new gradient device={new_sharded_grad.device}", ) @no_type_check def _low_precision_hook_enabled(state: _FSDPState) -> bool: return state._comm_hook in LOW_PRECISION_HOOKS @no_type_check @torch.no_grad() def _post_backward_final_callback( state: _FSDPState, module: nn.Module, ): """ This waits for the post-backward to finish and performs some final cleanup. This runs at the end of the entire backward pass and should only be called on the root FSDP instance. """ _p_assert( state._is_root, "The post-backward callback should only be called on the root FSDP instance", ) root_state = state if root_state._sync_gradients: current_stream = state._device_handle.current_stream() # TODO (rohan-varma): this also waits for the overlapped optimizer step to finish # since it currently runs in the post-backward stream. That can be # pushed to the next forward if run in a different stream current_stream.wait_stream(root_state._post_backward_stream) if root_state._all_reduce_stream is not current_stream: # uses HSDP current_stream.wait_stream(root_state._all_reduce_stream) if root_state.cpu_offload.offload_params: # Wait for non-blocking GPU -> CPU sharded gradient copies from the # post-backward hooks to finish explicitly since CPU gradients do # not automatically synchronize with the GPU state._device_handle.current_stream().synchronize() root_state._exec_order_data.next_iter() for fsdp_state in state._all_fsdp_states: _catch_all_reshard(fsdp_state) _finalize_params(fsdp_state) fsdp_state.training_state = TrainingState.IDLE handle = fsdp_state._handle if handle: handle._ran_pre_backward_hook = False handle._needs_pre_backward_unshard = False handle._post_forward_index = None handle._training_state = HandleTrainingState.IDLE handle._prefetched = False # Reset for cases like one forward and multiple backwards root_state._post_backward_callback_queued = False @no_type_check def _catch_all_reshard( state: _FSDPState, ) -> None: """ Reshards the parameters that may not have been resharded in the post-backward hook. This can happen when a module's output is used in the forward pass, meaning that its pre-backward hook runs (unsharding the parameter), but the post-backward hook does not run because the output was not jused in the loss computation corresponding to this backward pass. """ # Wrap with a try-except to provide a more informative traceback if an # error is raised try: if state._handle: # TODO: This already-resharded check is brittle: # https://github.com/pytorch/pytorch/issues/83956 already_resharded = ( state._handle.flat_param.data_ptr() == state._handle.flat_param._local_shard.data_ptr() # If FSDP skipped using sharded views, then the flat parameter # still points to the sharded data, so we need to reshard to # use sharded views and not state._handle._skipped_use_sharded_views ) if already_resharded: return free_unsharded_flat_param = _should_free_in_backward(state, state._handle) _reshard(state, state._handle, free_unsharded_flat_param) except Exception as e: _p_assert( False, f"Got exception in the catch-all reshard for {state}: {str(e)}", raise_assertion_error=False, ) raise e @no_type_check def _finalize_params( state: _FSDPState, ) -> None: """Finalizes the parameters before the next iteration.""" handle = state._handle if not handle: return flat_param = handle.flat_param if torch.distributed._functional_collectives.is_torchdynamo_compiling(): if hasattr(flat_param, "_post_backward_hook_handle"): pbhs_handle = flat_param._post_backward_hook_handle pbhs_handle.remove() del flat_param._post_backward_hook_handle else: if hasattr(flat_param, "_post_backward_hook_state"): post_backward_hook_state_len = len(flat_param._post_backward_hook_state) expected_post_backward_hook_state_len = int(flat_param.requires_grad) + 1 _p_assert( post_backward_hook_state_len == expected_post_backward_hook_state_len, f"Invalid: ``_post_backward_hook_state``: {flat_param._post_backward_hook_state}", ) flat_param._post_backward_hook_state[-1].remove() delattr(flat_param, "_post_backward_hook_state") if flat_param.requires_grad: if not state._sync_gradients: # Preserve the gradient accumulation state if not synchronizing # gradients: `.grad` remains the unsharded gradient from prior # `no_sync()` iterations, and `_saved_grad_shard` remains the # sharded gradient from the last synchronized iteration return if not handle._has_optim_in_backward: handle.prepare_gradient_for_optim() _p_assert( hasattr(flat_param, "_post_backward_called"), "Expects `_post_backward_called` to be set on the `FlatParameter`", ) flat_param._post_backward_called = False @no_type_check def _prefetch_handle( state: _FSDPState, current_handle: Optional[FlatParamHandle], prefetch_mode: _PrefetchMode, ) -> None: """ Prefetches the next handles if needed (without synchronization). An empty handles key cannot prefetch. """ if not current_handle: return handle = _get_handle_to_prefetch(state, current_handle) if not handle: return # Temporarily emulate the training state while calling `_unshard` to # ensure the correct `as_params` for `_use_unsharded_views()` prev_training_state = handle._training_state if prefetch_mode == _PrefetchMode.BACKWARD: handle._training_state = HandleTrainingState.BACKWARD_PRE elif prefetch_mode == _PrefetchMode.FORWARD: handle._training_state = HandleTrainingState.FORWARD else: raise ValueError(f"Invalid prefetch mode on rank {state.rank}: {prefetch_mode}") # Prefetch the next set of handles without synchronizing to allow # the sync to happen as late as possible to maximize overlap _unshard(state, handle, state._unshard_stream, state._pre_unshard_stream) handle._training_state = prev_training_state handle._prefetched = True @no_type_check def _get_handle_to_prefetch( state: _FSDPState, current_handle: FlatParamHandle, ) -> FlatParamHandle: """ Returns a :class:`list` of the handles keys to prefetch for the next module(s), where ``current_handle`` represents the current module. "Prefetching" refers to running the unshard logic early (without synchronization), and the "next" modules depend on the recorded execution order and the current training state. """ training_state = _get_training_state(current_handle) valid_training_states = ( HandleTrainingState.BACKWARD_PRE, HandleTrainingState.BACKWARD_POST, HandleTrainingState.FORWARD, ) _p_assert( training_state in valid_training_states, f"Prefetching is only supported in {valid_training_states} but " f"currently in {training_state}", ) eod = state._exec_order_data target_handle: Optional[FlatParamHandle] = None if ( training_state == HandleTrainingState.BACKWARD_PRE and state.backward_prefetch == BackwardPrefetch.BACKWARD_PRE ) or ( training_state == HandleTrainingState.BACKWARD_POST and state.backward_prefetch == BackwardPrefetch.BACKWARD_POST ): target_handle_candidate = eod.get_handle_to_backward_prefetch(current_handle) if ( target_handle_candidate and target_handle_candidate._needs_pre_backward_unshard and not target_handle_candidate._prefetched ): target_handle = target_handle_candidate else: target_handle = None elif training_state == HandleTrainingState.FORWARD and state.forward_prefetch: target_handle_candidate = eod.get_handle_to_forward_prefetch(current_handle) if ( target_handle_candidate and target_handle_candidate._needs_pre_forward_unshard and not target_handle_candidate._prefetched ): target_handle = target_handle_candidate else: target_handle = None return target_handle def _get_training_state( handle: FlatParamHandle, ) -> HandleTrainingState: """Returns the training state of the handles in ``handle``.""" _p_assert(handle, "Expects a non-empty handle") return handle._training_state @no_type_check def _register_pre_forward_hook( state: _FSDPState, module: nn.Module, ) -> None: """ Registers a pre-forward hook on ``module``. """ for forward_handle in state._pre_forward_handles: forward_handle.remove() state._pre_forward_handles.clear() module_param_handle = state._fully_sharded_module_to_handle.get(module, None) hook = functools.partial( _pre_forward, state, module_param_handle, _pre_forward_unshard ) state._pre_forward_handles.append( module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True) ) @no_type_check def _register_post_forward_hook( state: _FSDPState, module: nn.Module, ) -> None: """ Registers a post-forward hook on ``module``. Even if the module has no handles, we should register the hook since it will register the module's pre-backward hook. """ for forward_handle in state._post_forward_handles: forward_handle.remove() state._post_forward_handles.clear() module_param_handle = state._fully_sharded_module_to_handle.get(module, None) hook = functools.partial( _post_forward, state, module_param_handle, _post_forward_reshard, ) state._post_forward_handles.append(module.register_forward_hook(hook)) @no_type_check def _register_root_pre_forward_hook( state: _FSDPState, module: nn.Module, ): """ Registers root pre-forward hook on ``module``, which should be the local FSDP root. NOTE: For the current composable FSDP design, we have each application of ``fully_shard()`` to a module to indicate that that module is the local FSDP root. We may remove this assumption in the future, in which case we will need to register this root pre-forward hook on any candidate module that may be the local FSDP root. """ for forward_handle in state._root_pre_forward_handles: forward_handle.remove() state._root_pre_forward_handles.clear() hook = functools.partial(_root_pre_forward, state) state._root_pre_forward_handles.append( module.register_forward_pre_hook(hook, prepend=True, with_kwargs=True) ) @no_type_check def _register_pre_backward_hooks( state: _FSDPState, module: nn.Module, outputs: Any, handle: FlatParamHandle, ) -> None: """ Registers pre-backward hooks on the tensors that require gradients in the forward pass outputs ``outputs``, which were computed using the ``FlatParameter`` s of ``handles``. Args: module (nn.Module): Fully sharded module (see [Note: Fully Sharded Module]). Returns: Forward pass outputs with pre-backward hooks registered to tensors that require gradients. """ # If there is no gradient computation, then there is no need for # pre-backward logic if not torch.is_grad_enabled(): return outputs if state._is_root: state._post_backward_callback_queued = False # only defined on the root if handle: handle._needs_pre_backward_unshard = False # Since these handles' `FlatParameter`s participated in a forward, we # conservatively assume that they will be used in the backward handle._ran_pre_backward_hook = False def _register_hook(t: torch.Tensor) -> torch.Tensor: if t.requires_grad: t.register_hook( torch.utils.hooks.unserializable_hook( functools.partial(_pre_backward_hook, state, module, handle) ) ) if handle: handle._needs_pre_backward_unshard = True return t return _apply_to_tensors(_register_hook, outputs) def _register_post_backward_hook( state: _FSDPState, handle: Optional[FlatParamHandle], ) -> None: """ Registers post-backward hooks on the ``FlatParameter`` s' ``AccumulateGrad`` objects to reshard and to reduce-scatter gradients. The ``AccumulateGrad`` object represents the last function that finalizes the ``FlatParameter`` 's gradient, so it only runs after its entire gradient computation has finished. We register the post-backward hook only once in the *first* forward that a ``FlatParameter`` participates in. This relies on the ``AccumulateGrad`` object being preserved through multiple forwards. NOTE: We follow this heuristic to prefer the *first* forward to target the parameter mixed precision case, where there are *separate* ``AccumulateGrad`` objects across the different forwards. (Without parameter mixed precision, the ``AccumulateGrad`` objects are the same.) If we instead prefer the *last* forward, then the hook runs early. """ # If there is no gradient computation, then there is no need for # post-backward logic if not torch.is_grad_enabled(): return if not handle: return flat_param = handle.flat_param if torch.distributed._functional_collectives.is_torchdynamo_compiling(): already_registered = hasattr(flat_param, "_post_backward_hook_handle") if already_registered or not flat_param.requires_grad: return hook = functools.partial(_post_backward_hook, state, handle) hook_handle = flat_param.register_post_accumulate_grad_hook(hook) flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined] else: already_registered = hasattr(flat_param, "_post_backward_hook_state") if already_registered or not flat_param.requires_grad: return # Get the `AccumulateGrad` object temp_flat_param = flat_param.expand_as(flat_param) _p_assert( temp_flat_param.grad_fn is not None, "The `grad_fn` is needed to access the `AccumulateGrad` and " "register the post-backward hook", ) acc_grad = temp_flat_param.grad_fn.next_functions[0][0] # type: ignore[union-attr] assert acc_grad is not None hook_handle = acc_grad.register_hook( functools.partial(_post_backward_hook, state, handle) ) flat_param._post_backward_hook_state = (acc_grad, hook_handle) # type: ignore[attr-defined] def _register_post_backward_reshard_only_hook( state: _FSDPState, handle: Optional[FlatParamHandle], args: Tuple[Any, ...], kwargs: Dict[str, Any], ) -> None: """ Registers post-backward hooks to reshard flat parameters that do not require gradient. We register these using multi-post-grad hooks on the input activations to ensure that all gradients that may depend on the parameters have been computed before resharding. """ # If there is no gradient computation, then there is no need for # post-backward logic if not torch.is_grad_enabled(): return # Construct `inp_tensors` lazily to avoid CPU overhead in typical case # where each flat parameter requires gradient inp_tensors: Optional[List[torch.Tensor]] = None if not handle: return flat_param = handle.flat_param if torch.distributed._functional_collectives.is_torchdynamo_compiling(): already_registered = hasattr(flat_param, "_post_backward_hook_handle") else: already_registered = hasattr(flat_param, "_post_backward_hook_state") if already_registered or flat_param.requires_grad: return if inp_tensors is None: args_flat = pytree.arg_tree_leaves(*args, **kwargs) inp_tensors = [ obj for obj in args_flat if torch.is_tensor(obj) and obj.requires_grad ] assert inp_tensors is not None # mypy hook_handle = register_multi_grad_hook( inp_tensors, functools.partial(_post_backward_reshard_only_hook, state, handle) ) if torch.distributed._functional_collectives.is_torchdynamo_compiling(): flat_param._post_backward_hook_handle = hook_handle # type: ignore[attr-defined, assignment] else: flat_param._post_backward_hook_state = (hook_handle,) # type: ignore[attr-defined, assignment] @no_type_check def _register_post_backward_final_callback( state: _FSDPState, module: nn.Module ) -> None: """ Registers the post-backward final callback that runs at the end of the backward pass. This should be called from the root FSDP instance at the beginning of the pre-backward. """ _p_assert( state._is_root, "Only the root FSDP instance should register the post-backward callback", ) if state._post_backward_callback_queued: return _assert_in_training_states(state, [TrainingState.IDLE]) # Trace does not need this callback if not torch.distributed._functional_collectives.is_torchdynamo_compiling(): state._post_backward_callback_queued = True Variable._execution_engine.queue_callback( functools.partial(_post_backward_final_callback, state, module) ) def _wait_for_computation_stream( computation_stream: torch.Stream, unshard_stream: torch.Stream, pre_unshard_stream: torch.Stream, ): """ Has the unshard and pre-unshard streams wait for the computation stream. For example, this should be called in the FSDP root's pre-forward to respect optimizer step computation. """ # Tracing does not need to wait if torch.distributed._functional_collectives.is_torchdynamo_compiling(): return unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined] # Having the pre-all-gather stream wait for the current stream even if we # do not leverage the pre-all-gather stream is tolerable since this only # runs once per iteration pre_unshard_stream.wait_stream(computation_stream) # type: ignore[attr-defined] def _reset_flat_param_grad_info_if_needed( handles: List[FlatParamHandle], ): """ Clears the original parameters' gradients if needed. This method's CPU overhead is minimal, so we may call it throughout FSDP methods, which serve as callsites to free the gradient memory earlier. """ if not isinstance(handles, list): handles = [handles] for handle in handles: if handle._use_orig_params: handle._reset_flat_param_grad_info_if_needed() @no_type_check def _get_buffers_and_dtypes_for_computation( state: _FSDPState, root_module: nn.Module, ) -> Tuple[List[torch.Tensor], List[Optional[torch.dtype]]]: """ Returns all buffers in the module tree rooted at ``root_module`` and a corresponding list of the buffer dtypes for computation. Each buffer dtype is either ``None`` if buffer mixed precision is not enabled or the buffer low precision dtype otherwise. """ _p_assert(state._is_root, "Expects the root to cast buffers") buffers: List[torch.Tensor] = [] buffer_dtypes: List[Optional[torch.dtype]] = [] visited_buffers: Set[torch.Tensor] = set() # Traverse the FSDP states bottom-up so that we prefer the owning FSDP # instance's mixed precision setting for each buffer fsdp_states, fsdp_modules = traversal_utils._get_fsdp_states_with_modules( root_module ) for fsdp_state, fsdp_module in zip(reversed(fsdp_states), reversed(fsdp_modules)): for buffer_name, buffer in fsdp_module.named_buffers(): if buffer in visited_buffers: continue visited_buffers.add(buffer) if clean_tensor_name(buffer_name) in fsdp_state._ignored_buffer_names: continue buffers.append(buffer) buffer_dtypes.append(fsdp_state.mixed_precision.buffer_dtype) assert len(buffers) == len(buffer_dtypes), f"{len(buffers)} {len(buffer_dtypes)}" return buffers, buffer_dtypes @no_type_check def _get_orig_buffer_dtypes( state: _FSDPState, buffer_names: List[str], ) -> List[torch.dtype]: """ Returns the original buffer types of the given buffer names. """ buffer_dtypes: List[torch.dtype] = [] for buffer_name in buffer_names: _p_assert( buffer_name in state._buffer_name_to_orig_dtype, f"{buffer_name} is missing from pre-computed dict on rank " f"{state.rank}, which only has keys " f"{state._buffer_name_to_orig_dtype.keys()}", ) buffer_dtypes.append(state._buffer_name_to_orig_dtype[buffer_name]) return buffer_dtypes def _cast_buffers_to_dtype_and_device( buffers: List[torch.Tensor], buffer_dtypes: List[Optional[torch.dtype]], device: torch.device, ) -> None: """ Casts ``buffers`` to the dtypes given by ``buffer_dtypes`` and moves them to ``device``. If an element in ``buffer_dtypes`` is ``None``, then the corresponding buffer is only moved to ``device``. """ _p_assert( buffer_dtypes is None or len(buffers) == len(buffer_dtypes), f"Expects `buffers` and `buffer_dtypes` to have the same length if " f"`buffer_dtypes` is specified but got {len(buffers)} and " f"{len(buffer_dtypes)}", ) for buffer, buffer_dtype in zip(buffers, buffer_dtypes): if not torch.is_floating_point(buffer) or buffer_dtype is None: buffer.data = buffer.to(device=device) else: buffer.data = buffer.to(device=device, dtype=buffer_dtype)